Structural features and transport properties of lithiated fluorite-like molybdates Nd5MO3O16 in the temperature range 20–900°C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The structure of lithiated fluorite-like molybdates of the Ln5Mo3O16+δ family was studied using accurate X-ray diffraction analysis in the temperature range 20–777°C (293–1050 K). Thermally activated redistribution of oxygen ions over basic and interstitial positions and reversible change in the position occupancies upon heating–cooling were established. Thermal stability, ionic oxygen conductivity and dielectric properties of ceramic samples of undoped and Li-containing Nd5Mo3O16+δ phases were studied in the temperature range 20–900°C. The results demonstrate the possibility of controlling the functional properties of materials for use in medium-temperature solid oxide fuel cells.

Full Text

Restricted Access

About the authors

E. I. Orlova

National Research Center “Kurchatov Institute”; Lomonosov Moscow State University

Author for correspondence.
Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow; Moscow

E. S. Smirnova

National Research Center “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

N. V. Lyskov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: agapova@polly.phys.msu.ru
Russian Federation, Chernogolovka, Moscow oblast

E. P. Kharitonova

National Research Center “Kurchatov Institute”; Lomonosov Moscow State University

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow; Moscow

T. A. Sorokin

National Research Center “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

A. M. Antipin

National Research Center “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

E. V. Sidorova

National Research Center “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

N. E. Novikova

National Research Center “Kurchatov Institute”

Email: natnov@ns.crys.ras.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

N. I. Sorokina

National Research Center “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

V. I. Voronkova

Lomonosov Moscow State University

Email: agapova@polly.phys.msu.ru
Russian Federation, Moscow

O. A. Alekseeva

National Research Center “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

References

  1. Hubert P.-H., Michel P., Thozet A. // Compt. Rend. Acad. Sc. Paris. 1973. V. 276. P. 1779.
  2. Tsai M., Greenblatt M., McCarroll W.H. // Chem. Mater. 1989. V. 1. P. 253. https://doi.org/10.1021/cm00002a017
  3. Voronkova V.I., Leonidov I.A., Kharitonova E.P. et al. // J. Alloys Compd. 2014. V. 615. P. 395. https://doi.org/10.1016/j.jallcom.2014.07.019
  4. Jacas Biendicho J., Playford H.Y., Rahman S.M.H. et al. // Inorg. Chem. 2018. V. 57. № 12. P. 7025. https://doi.org/10.1021/acs.inorgchem.8b00734
  5. Lyskov N.V., Kotova A.I., Istomin S.Y. et al. // Russ. J. Electrochem. 2020. V. 56. № 2. P. 93. https://doi.org/10.1134/S102319352002010X
  6. Kendall K., Kendall M. High-Temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications. Elsevier, 2015.
  7. Boudghene Stambouli A., Traversa E. // Renew. Sustain. Energy Rev. 2002. V. 6. № 3. P. 295. http://www.sciencedirect.com/science/article/pii/S1364-0321(01)00015-6
  8. Steele B.C.H., Heinzel A. // Nature. 2001. V. 414. P. 345. https://doi.org/10.1038/35104620
  9. Brett D.J.L., Atkinson A., Brandon N.P. et al. // Chem. Soc. Rev. 2008. V. 37. P. 1568. https://doi.org/10.1039/B612060C
  10. Ishihara T., Shibayama T., Honda M. et al. // J. Electrochem. Soc. 2000. V. 147. P. 1332. https://doi.org/10.1149/1.1393358
  11. Орлова Е.И., Трухачева М.П., Сорокин Т.А. и др. // Кристаллография. 2024. Т. 69. № 2. С. 259. https://doi.org/10.31857/S0023476124020092
  12. Martínez-Lope M.J., Alonso J.A., Sheptyakov D. et al. // J. Solid State Chem. 2010. V. 183. № 12. P. 2974. https://doi.org/10.1016/j.jssc.2010.10.015
  13. Alekseeva O.A., Gagor A.B., Pietraszko A. et al. // Z. Kristallogr. 2012. V. 227. № 12. P. 869. https://doi.org/10.1524/zkri.2012.1563
  14. Antipin A.M., Sorokina N.I., Alekseeva O.A. et al. // Acta Cryst. B. 2015. V. 71. № 2. P. 186. https://doi.org/10.1107/S2052520615003315
  15. Ishikawa Y., Danilkin S.A., Avdeev M. et al. // Solid State Ionics. 2016. V. 288. P. 303. https://doi.org/10.1016/j.ssi.2015.12.005
  16. Voronkova V.I., Kharitonova E.P., Orlova E.I. // Crystallography Reports. 2018. V. 63. P. 127. https://doi.org/10.1134/S1063774518010212
  17. Voronkova V.I., Kharitonova E.P., Orlova E.I. et al. // J. Alloys Compd. 2016. V. 673. P. 314. https://doi.org/10.1016/j.jallcom.2016.03.013
  18. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 42.74a. 2018. Rigaku Corporation, Oxford, UK.
  19. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  20. Palatinus L. // Acta Cryst. В. 2013. V. 69. P. 1. https://doi.org/10.1107/S2052519212051366
  21. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Projection of the Li0.216Nd4.784Mo3O14.1+δ crystal structure onto the bc plane [11].

Download (220KB)
3. Fig. 2. Diffraction patterns of polycrystalline phases LixNd5–xMo3O16±δ, x = 0 (1–3) and 0.15 (4, 5): equilibrium (1, 4) [11], quenched (2), and long-aged samples (3, 5).

Download (76KB)
4. Fig. 3. Temperature dependences of the permittivity of LixNd5–xMo3O16±δ samples (x = 0 (1), 0.15 (2)) at frequencies of 5 (a), 50 Hz (b), and 50 kHz (c).

Download (163KB)
5. Fig. 4. Temperature dependences of the total conductivity of the quenched polycrystalline LixNd5–xMo3O16±δ (x = 0) sample obtained during two consecutive heating–cooling cycles (1–2 and 3–4, respectively) (solid and empty symbols, respectively).

Download (77KB)
6. Fig. 5. Fourier maps of the electron density calculated from Fobs in the center of a type II cavity for the structural model of a Li0.2Nd4.8Mo3O15.2+δ single crystal at different temperatures. The step of isolines is 1 e Å–3.

Download (778KB)

Copyright (c) 2025 Russian Academy of Sciences