Crystallization of proteins using a temperature gradient

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of many years of work on the development of a new method of temperature control and the apparatus developed on its basis for the automatic growth of protein crystals, in which the possibility of separate control of both the process of nucleation and growth of the formed crystals is realized.

Full Text

Restricted Access

About the authors

V. I. Strelov

National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: strelovvi@mail.ru
Russian Federation, Moscow

V. V. Safronov

National Research Centre “Kurchatov Institute”

Email: strelovvi@mail.ru
Russian Federation, Moscow

S. I. Supelnyak

National Research Centre “Kurchatov Institute”

Email: strelovvi@mail.ru
Russian Federation, Moscow

References

  1. Giegé R. // FEBS J. 2013. V. 280. P. 6456. https://doi.org/10.1111/febs.12580
  2. Rosenberger F., Meehan E.J. // J. Cryst. Growth. 1988. V. 90. P. 74. https://doi.org/10.1016/0022-0248(88)90300-4
  3. Garcia-Ruiz J.M., Moreno A. // J. Cryst. Growth. 1997. V. 178. P. 393. https://doi.org/10.1016/S0022-0248(96)01188-8
  4. Rosenberger F., Howard S.B., Sowers J.W., Nyce T.A. // J. Cryst. Growth. 1993. V. 129. P. 1. https://doi.org/10.1016/0022-0248(93)90427-X
  5. Tabor H.G., Jasak H., Fureby C. // Comput. Phys. 1998. V. 12. P. 620.
  6. Safronov V.V., Krivonogova N.V., Bezbakh I.Zh., Strelov V.I. // J. Mol. Liquids. 2019. V. 284. P. 353. https://doi.org/10.1016/j.molliq.2019.04.013
  7. Otalora F., Garcia-Ruiz J.M. // J. Cryst. Growth. 1997. V. 182. P. 141. https://doi.org/10.1016/S0022-0248(97)00325-4
  8. Carotenuto L., Piccolo C., Castagnolo D. // Acta Cryst. D. 2002. V. 58. P. 1628. https://doi.org/10.1107/S09074449010116444
  9. Lin H., Rosenberger F., Alexander J.I.D. // J. Cryst. Growth. 1995. V. 151. P. 153. https://doi.org/10.1016/0022-0248(95)00016-X
  10. Vekilov P.G., Rosenberger F., Lin H. // J. Cryst. Growth. 1999. V. 196. P. 261. http://doi.org/ 10.1016/S0022-0248(98)00840-9
  11. Lee C.P., Chernov A.A. // J. Cryst. Growth. 2002. V. 240. P. 531. https://doi.org/10.1016/S0022-0248(02)00909-0
  12. Savino R., Monti R. // Int. J. Heat Mass Transfer. 1999. V. 42. P. 111. https://doi.org/10.1016/S0017-9310(98)00140-9
  13. Безбах И.Ж., Захаров Б.Г., Стрелов В.И. и др. // Тр. 6-й Междунар. конф. “Рост монокристаллов и тепломассоперенос” (ICSC-2005). Обнинск. 2005. Т. 3. С. 545.
  14. Bezbakh I.Zh., Ginkin V.P., Safronov V.V. et al. // J. Mol. Liquids. 2019. V. 283. P. 652. https://doi.org/10.1016/j.molliq.2019.03.042
  15. Стрелов В.И., Захаров Б.Г., Безбах И.Ж. и др. // Кристаллография. 2018. Т. 63. № 1. С. 163. https://doi.org/10.7868/S0023476118010198
  16. Куранова И.П. // Поверхность. Рентген., синхротр. и нейтр. исслед. 2004. № 6. С. 4.
  17. Стрелов В.И., Куранова И.П., Захаров Б.Г., Волошин А.Э. // Кристаллография. 2014. Т. 59. № 6. С. 863. https://doi.org/10.7868/S0023476114060289

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Crystallization experiment scheme (a) and calculated flow pattern in the vicinity of the cold point (b): 1 – thermostatted body, 2 – cold wedge, 3 – capillary with protein solution, 4 – grown crystal.

Download (228KB)
3. Fig. 2. Change in temperature T and supersaturation S during experimental crystallization by the “quasistationary” cooling method: 1 – chamber wall temperature, 2 – cold wedge temperature (initially coincides with wall temperature), 3 – calculated supersaturation near the cold wedge in the absence of crystallization, 4 – hypothetical course of supersaturation near the cold wedge taking into account protein extraction from solution by the growing crystal after the onset of crystallization at S = 3, indicated by a circle.

Download (51KB)
4. Fig. 3. Protein crystals grown using different temperature control algorithms: lysozyme crystal grown by the “quasistationary” cooling method (a) and xylanase crystal grown by the temperature “shock” method (b). The shooting was carried out between crossed polarizers.

Download (47KB)
5. Fig. 4. Calculated dependences of the crystal mass on time at a constant (1) and a cold zone temperature that was decreased during the experiment (2).

Download (40KB)
6. Fig. 5. Calculated sizes and shapes of crystals obtained at the time of 7 × 105 s (~8 days) at a constant (a) and a cold zone temperature that was decreased during the experiment (b).

Download (44KB)
7. Fig. 6. Single lysozyme crystals (a) grown by the temperature gradient method during the experiment on the Foton-4M automatic spacecraft (July–September 2014), and multiple crystal nucleations (b) in the absence of a temperature gradient.

Download (61KB)

Copyright (c) 2025 Russian Academy of Sciences