Bulk photovoltaic effect in gyrotropic crystals

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The effect of optical activity on the linear and circular bulk photovoltaic effect in crystals without a center of symmetry is investigated. It is shown that there is a phase shift of the linear photovoltaic current JL, which is opposite for the right and left crystals, and a modulus change. The circular photovoltaic current JC does not change in phase depending on the amount of optical activity, but depends on absorption and circular dichroism. The dependences of the JL current on the polarization of incident light are calculated, taking into account the optical activity for the right and left crystals Bi12SiO20, Bi12GeO20 and Bi12TiO20 (class 23). Similar JL calculations were performed for the right crystals Pb5Ge3O11 (class 3), La3Ga5SiO14 with impurities of Pr, Fe, Cr and Mn, Ca3TaGa3Si2O14 (class 32), Er(HCOO)3·2H2O (class 222) when light propagates in the direction of the optical axis. Examples of the JC value for Pb5Ge3O11, La3Ga5SiO14 crystals with impurities of Co, Cr, and Fe, as well as α-HgS (class 32), are given. It is shown that consideration of optical activity is necessary when studying the photorefractive effect in crystals.

全文:

受限制的访问

作者简介

V. Fridkin

National Research Center “Kurchatov Institute”

Email: tatgolovina@mail.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

俄罗斯联邦, Moscow

T. Golovina

National Research Center “Kurchatov Institute”

编辑信件的主要联系方式.
Email: tatgolovina@mail.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

俄罗斯联邦, Moscow

A. Konstantinova

National Research Center “Kurchatov Institute”

Email: tatgolovina@mail.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

俄罗斯联邦, Moscow

参考

  1. Греков А.А., Малицкая М.А., Спицына В.Д., Фридкин В.М. // Кристаллография. 1970. Т. 15. Вып. 3. С. 500.
  2. Фридкин В.М. Фотосегнетоэлектрики. М.: Физматгиз, 1979. 264 с.
  3. Sturman B., Fridkin V. The Photovoltaic and Photorefractive Effect in Noncentrosymmetric Materials. Philadelphia: Gordon and Breach Sci. Publ., 1992. 238 p.
  4. Fridkin V.M., Grekov A.A., Ionov P.V. et al. // Ferroelectrics. 1974. V. 8. P. 433. https://doi.org/10.1080/00150197408234118
  5. Chen F.S. // J. Appl. Phys. 1969.V. 40. № 8. P. 3389. https://doi.org/10.1063/1.1658195
  6. Dang Y., Tao X. // Matter. 2022. V. 5. P. 2659. https://doi.org/10.1016/j.matt.2022.06.011
  7. Fridkin V.M. // Ferroelectrics. 2018. V. 535. P. 32. https://doi.org/10.1080/00150193.2018.1474637
  8. Стурман Б.И. // Успехи физ. наук. 2020. Т. 190. № 4. С. 441. https://doi.org/10.3367/UFNr.2019.06.038578
  9. Pusch A., Römer U., Culcer D., Ekins-Daukes N.J. // PRX Energy. 2023. V. 2. P. 013006. https://doi.org/10.1103/PRXEnergy.2.013006
  10. Cuono G., Droghetti A., Picozzi S. 2024. arXiv:2412.12985v1. https://doi.org/10.48550/arXiv.2412.12985
  11. Петров М.П., Степанов С.И., Хоменко А.В. Фоторефрактивные кристаллы в когерентной оптике. СПб.: Наука, 1992. 320 с.
  12. Solymar L., Webb D.J., Grunnet-Jepsen A. The physics and applications of photorefractive materials. Oxford: Clarendon Press, 1996. 495 p.
  13. Шандаров С.М., Шандаров В.М., Мандель А.Е., Буримов Н.И. Фоторефрактивные эффекты в электрооптических кристаллах. Томск: ТУСУР, 2012. 242 с.
  14. Шувалов Л.А., Урусовская А.А., Желудев И.С. и др. Современная кристаллография. Т. 4. Физические свойства кристаллов. М.: Наука, 1981. 496 с.
  15. Федоров Ф.И. Теория гиротропии. Минск: Наука и техника, 1976. 456 с.
  16. Glass A.M., von der Linde D., Negran T.J. // Appl. Phys. Lett. 1974. V. 25. № 4. P. 233. https://doi.org/10.1063/1.1655453
  17. Батиров Т.М. Дис. “Фотовольтаический, фоторефрактивный и фотогистерезисный эффекты в сегнетоэлектриках и пьезоэлектриках” … докт. физ.-мат. наук. Махачкала, 2003. 222 с.
  18. Каминский А.А., Лазарев В.Г., Фридкин В.М. и др. // ФТТ. 1989. Т. 31. Вып. 8. С. 318.
  19. Vridkin V.M., Efremova E.P., Karimov B.H. et al. // Appl. Phys. 1981. V. 25. P. 77. https://doi.org/10.1007/BF00935395
  20. Петров М.П., Грачев А.И. // Письма в ЖЭТФ. 1979. Т. 30. Вып. 1. С. 18.
  21. Лазарев В.Г., Фридкин В.М., Шленский А.Л. // Письма в ЖЭТФ. 1986. Т. 44. Вып. 6. С. 275.
  22. Fridkin V.M., Batirov T.M., Konstantinova A.Th. et al. // Ferroelectr. Lett. 1982. V. 44. P. 27.
  23. https://mathus.ru/phys/szf.pdf
  24. Батог В.Н., Бурков В.И., Кизель В.А. и др. // Кристаллография. 1969. Т. 14. Вып. 5. С. 928.
  25. Ribeiro R.M., Fiasca A.B.A., dos Santos P.A.M. et al. // Opt. Mater. 1998. V. 10. P. 201. https://doi.org/10.1016/S0925-3467(97)00164-X
  26. Скориков В.М., Захаров И.С., Волков В.В., Спирин Е.А. // Неорган. материалы. 2002. Т. 38. № 2. С. 226.
  27. Belinicher V.I. // Phys. Lett. A. 1978. V. 66. № 3. P. 213. https://doi.org/10.1016/0375-9601(78)90660-6
  28. Фридкин В.М., Верховская К.А., Каримов Б.Х. и др. // Докл. АН СССР. 1980. Т. 255. № 6. С. 1359.
  29. Калдыбаев К.А., Константинова А.Ф., Перекалина З.Б. Гиротропия одноосных поглощающих кристаллов. М.: ИСПИН, 2000. 294 с.
  30. Белиничер В.И., Стурман Б.И. // Успехи физ. наук. 1980. Т. 130. Вып. 3. С. 415. https://doi.org/10.3367/UFNr.0130.198003b.0415
  31. Esayan S.K., Lemanov V.V., Maksimov A.Y. // Ferroelectr. Lett. 1984. V. 2. P. 93. https://doi.org/10.1080/07315178408200567
  32. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
  33. Забелина Е.В., Козлова Н.С., Бузанов О.А. // Оптика и спектроскопия. 2023. Т. 131. Вып. 5. С. 634. https://doi.org/10.21883/OS.2023.05.55715.67-22
  34. Константинова А.Ф., Головина Т.Г., Дудка А.П. // Кристаллография. 2018. Т. 63. № 2. С. 218. https://doi.org/10.7868/S0023476118020091
  35. Окорочков А.И. Дис. “Исследование оптической активности низкосимметричных поглощающих кристаллов” … канд. физ.-мат. наук. М.: ИК РАН, 1983. 191 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculated dependences of the linear photovoltaic current 2JL/(I0α) in Bi12SiO20, Bi12GeO20 and Bi12TiO20 crystals on the polarization of incident light: a – right crystal (ρ < 0), b – left crystal (ρ > 0), wavelength λ = 0.488 μm, thickness d = 1 mm.

下载 (121KB)
3. Fig. 2. Linear OPE in Bi12SiO20: a – orientation dependence of the photoinduced field Eph, b – dependence of the photoconductivity of the sample on the light intensity [20].

下载 (107KB)
4. Fig. 3. Calculated dependences of the linear photovoltaic current Jx,z L and Jy,z L on the polarization of incident light for the Pb5Ge3O11 crystal at T = 20 °C, ρ < 0, λ = 0.44 μm, d = 3 mm (a). Dependences of Jy,zL (b) and Jz,zL (c) on temperature for the Pb5Ge3O11 crystal (phase transition temperature TC = 177 °C): 1 – 0.63, 2 – 0.44 μm [3]. Illumination occurs along the optical axis z.

下载 (129KB)
5. Fig. 4. Circular OPE in a Pb5Ge3O11 crystal: a – dependence of the circular photovoltaic current JzC on the constant electric field applied along the z axis [31], b – dependence of JzC on temperature [3, 31]. Light propagates along the optical axis z.

下载 (121KB)
6. Fig. 5. Calculated dependences of ρ(λ) and linear photovoltaic currents Jx,z L/Jmax and Jy,z L/Jmax (Jmax = β11I0) on the incident light polarization angle φ for right-handed La3Ga5SiO14 (a, b, c) and Ca3TaGa3Si2O14 (d, e, f) crystals, d = 2 mm, λ = 0.4, 0.45, 0.5, 0.55, 0.6 μm (1–5). The light propagates along the optical axis z.

下载 (360KB)
7. Fig. 6. Dependences of linear photovoltaic currents on incident light polarization: a – experimental values of Jx,z L and Jy,z L for La3Ga5SiO14 crystals with Pr impurity of thickness d = 3 mm [18]; b – calculation of Jx,z L and Jy,z L for La3Ga5SiO14 crystals with Pr and Fe impurity, d = 3 mm. Wavelength λ = 0.488 μm. Light propagates along the z optical axis.

下载 (159KB)
8. Fig. 7. Dependences of linear photovoltaic currents on the polarization of incident light: a – experimental values of Jy,z L /I0 for La3Ga5SiO14 with Cr impurity [17]; b – calculation of Jx,z L /I0 and Jy,z L /I0, solid lines – La3Ga5SiO14 with Cr impurity, dotted lines – La3Ga5SiO14 with Mn impurity. Light propagates along the z optical axis, d = 3 mm, λ = 0.488 μm.

下载 (133KB)
9. Fig. 8. Dependence of the circular photovoltaic current JzC on the degree of circular polarization of light: a – for the La3Ga5SiO14 crystal with a Cr impurity (T = 293 K, λ = 0.488 μm) [17], b – for the α-HgS crystal (T = 123 K, λ = 0.580 μm) [22]. The light propagates along the optical axis z.

下载 (91KB)
10. Fig. 9. Dependence of the photovoltaic current Jx,y L on the polarization of incident light for a natural quartz crystal: 1 – original sample, 2 – annealed, 3 – irradiated with electrons [3]. The light propagates along the y axis.

下载 (75KB)
11. Fig. 10. Dependences of the linear photovoltaic current Jx,z' L (1), Jy',z' L (2), Jz',z' L (3) on the polarization of incident light in the Er(HCOO)3⋅2H2O crystal: a – without taking into account optical activity [17, 22]; b – calculation taking into account optical activity (ρ < 0) for a sample with a thickness of d = 1 mm. Light propagates along one of the optical axes z'.

下载 (130KB)
12. Fig. 11. Diffraction efficiency η of the hologram (a) and ellipticity τ of the diffracted light when reading the hologram with circularly polarized light as a function of angle θ in a Bi12SiO20 crystal (d = 3.45 mm): 1, 2 – without taking into account optical activity, 1, 3 – without taking into account the piezoelectric effect, 4 – with taking into account the piezoelectric effect and optical activity, circles are experimental results [13].

下载 (162KB)
13. Fig. 12. Dependence of the change in birefringence Δn on the illumination time of a La3Ga5SiO14:Pr crystal for three orientations of the light polarization vector, P = 115 mW, λ = 0.514 μm, d = 3 mm [18]. Illumination occurs along the optical axis z.

下载 (58KB)

版权所有 © Russian Academy of Sciences, 2025