Quasi-synchronous second harmonic generation in photonic crystal structures based on iodic acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The frequency conversion efficiency of the long-wavelength part of the optical spectrum is considered. The problem of generating the second harmonic in two-dimensional photonic crystals based on iodic acid is considered in order to convert long-wave radiation into the visible range for subsequent registration by traditional silicon detectors. The problems of synthesis of two-dimensional photonic crystal structures for practical problems of nonlinear optics and photonics are discussed.

Full Text

Restricted Access

About the authors

A. A. Konovko

Lomonosov Moscow State University

Author for correspondence.
Email: konovkoaa@my.msu.ru
Russian Federation, Moscow

A. V. Andreev

Lomonosov Moscow State University

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow

V. V. Berezkin

National Research Center “Kurchatov Institute”

Email: konovkoaa@my.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

Yu. V. Grigoriev

National Research Center “Kurchatov Institute”

Email: konovkoaa@my.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

N. М. R. Kriman

Lomonosov Moscow State University

Email: konovkoaa@my.msu.ru
Russian Federation, Moscow

M. V. Reshetova

National Research Center “Kurchatov Institute”

Email: konovkoaa@my.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

N. V. Minaev

National Research Center “Kurchatov Institute”

Email: konovkoaa@my.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

E. O. Epifanov

National Research Center “Kurchatov Institute”

Email: konovkoaa@my.msu.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

V. E. Asadchikov

National Research Center “Kurchatov Institute”

Email: asad@crys.ras.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Russian Federation, Moscow

References

  1. Pircher M., Götzinger E., Leitgeb R. et al. // Opt. Express. 2003. V. 11. № 18. P. 2190. https://doi.org/10.1364/oe.11.002190
  2. Terrazas-Nájera C.A., Romero A., Felice R., Wicker R. // Additive Manufacturing. 2023. V. 63. P. 103404. https://doi.org/10.1016/j.addma.2023.103404
  3. Wang W., Paliwal J. // Sens. Instrum. Food Quality. 2007. V. 1. P. 193. https://doi.org/10.1007/s11694-007-9022-0
  4. Chrzanowski K. // Opto-Electron. Rev. 2023. V. 31. № 1. P. e145327. https://doi.org/10.24425/10.24425/opelre.2023.145327
  5. Høgstedt L., Fix A., Wirth M. et al. // Opt. Express. 2016. V. 24. № 5. P. 5152. https://doi.org/10.1364/OE.24.00515
  6. Rogalski A., Kopytko M., Martyniuk P. // Appl. Phys. Rev. 2019. V. 6. P. 021316.
  7. Midwinter J.E. // Appl. Phys. Lett. 1969. V. 14. P. 29. https://doi.org/10.1063/1.1652645
  8. Del Rocio Camacho-Morales M., Rocco D., Xu L. et al. // Adv. Photon. 2021. V. 3. № 3. P. 036002. https://doi.org/10.1117/1.AP.3.3.036002
  9. Chen J.-Y., Tang C., Ma Z.-H. et al. // Opt. Lett. 2020. V. 45. № 13. P. 3389. https://doi.org/10.1364/OL.393445
  10. Асадчиков В.Е., Бедин С.А., Васильев А.Б. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 10. https://doi.org/10.31857/S1028096022030037
  11. Асадчиков В.Е., Бедин С.А., Березкин В.В. и др. // Письма в ЖТФ. 2022. Т. 48. Вып. 6. С. 7. https://doi.org/10.21883/PJTF.2022.06.52203.19084
  12. Armstrong J.A., Bloembergen N., Ducuing J., Pershan P.S. // Phys. Rev. 1962. V. 127. № 6. P. 1918. https://doi.org/10.1103/PhysRev.127.1918
  13. Fejer M.M., Magel G.A., Jundt D.H. et al. // IEEE J. Quantum Electron. 1992. V. 28. № 11. P. 2631. https://doi.org/10.1109/3.161322
  14. Волков В.В., Лаптев Г.Д., Морозов Е.Ю. и др. // Квантовая электроника. 1998. Т. 25. № 11. С. 1046. https://doi.org/10.1070/QE1998v028n11ABEH001377
  15. Кравцов Н.В., Лаптев Г.Д., Наумова И.И. и др. // Квантовая электроника. 2002. Т. 32. № 10. С. 923. https://doi.org/10.1070/QE2002v032n10ABEH002318
  16. Sakoda K., Ohtaka K. // Phys. Rev. B. 1996. V. 54. № 8. P. 5742. https://doi.org/10.1103/PhysRevB.54.5742
  17. Scalora M., Bloemer M.J., Manka A.S. et al. // Phys. Rev. A. 1997. V. 56. № 4. P. 3166. https://doi.org/10.1103/PhysRevA.56.3166
  18. Balakin A.V., Bushuev V.A., Mantsyzov B.I. et al. // Phys. Rev. E. 2001. V. 63. P. 046609. https://doi.org/10.1103/PhysRevE.63.046609
  19. Li J.J., Li Z.Y., Zhang D.Z. // Phys. Rev. E. 2007. V. 75. P. 056606. https://doi.org/10.1103/PhysRevE.75.056606
  20. Plihal M., Maradudin A.A. // Phys. Rev. B. 1991. V. 44. P. 8565. https://doi.org/10.1103/PhysRevB.44.8565
  21. Minaev N.V., Tarkhov M.A., Dudova D.S. et al. // Laser Phys. Lett. 2018. V. 15. № 2. P. 026002. https://doi.org/10.1088/1612-202X/aa8bd1
  22. Shavkuta B.S., Gerasimov M.Y., Minaev N.V. et al. // Laser Phys. Lett. 2018. V. 15. P. 015602. https://doi.org/10.1088/1612-202X/aa963b
  23. Epifanov E.O., Tarkhov M.A., Timofeeva E.R. et al. // Laser Phys. Lett. 2021. V. 18 (3). P. 036201. https://doi.org/10.1088/1612-202X/abdcc1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The ratio of the signal intensities at the second harmonic frequency when the quasi-phase-matching condition Iqs(2ω) is met and at the second harmonic frequency outside the phase-matching angle over the coherence length Ins(2ω).

Download (46KB)
3. Fig. 2. Schematic diagram of the quasi-phase-matching SHG process in non-coplanar “transmission” geometry: kω are the wave vectors of radiation at the fundamental frequency in air, the dashed arrows indicate the projections onto the OXY plane and the Z axis of the wave vectors of radiation at the fundamental frequency in the bulk of the photonic crystal; kg is the reciprocal lattice vector; k2ω is the wave vector of radiation at the second harmonic frequency (in air – solid arrow, in the bulk of the crystal – dashed arrow); the dashed arrow also indicates the projection of radiation at the second harmonic frequency onto the OXY plane; the two-dimensional photonic crystal is shown schematically as a rectangular parallelepiped, the reciprocal lattice vector is parallel to the OXY plane.

Download (73KB)
4. Fig. 3. Schematic diagram of the quasi-synchronous SHG process in the coplanar transmission geometry: k and k′ are the wave vectors of the radiation at the fundamental frequency; K is the wave vector of the radiation at the second harmonic frequency; kg is the reciprocal lattice vector.

Download (153KB)
5. Fig. 4. Schematic diagram of a two-dimensional photonic crystal of finite thickness for the implementation of the quasi-synchronous SHG process in the coplanar transmission geometry: a is the crystal period, R is the radius of cylindrical crystals of iodic acid, ε1 and ε2 are the permittivity of iodic acid and the PET matrix, respectively; ny is the number of periods of the photonic crystal along the Y axis.

Download (92KB)
6. Fig. 5. Dependence of the ratio of the radiation intensities at the second harmonic frequency and at the fundamental frequency on the angle of incidence of two primary radiation beams at the fundamental frequency, the intensity of which is equal to 0.4 GW/cm2.

Download (52KB)

Copyright (c) 2025 Russian Academy of Sciences