Microstructural changes in magnesium alloy Mg-Zn-REE after irradiation with nanosecond laser pulses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the results of studies of the structure and composition of the surface and near-surface layers of the Mg–Y–Zn–Nd–Yb–Zr alloy system with a long-period phase after irradiation with nanosecond laser pulses using electron microscopy and energy-dispersive X-ray microanalysis. It is shown that in a two-phase alloy, a layer of nanocrystalline MgO with a thickness from 5 nm to hundreds of nm is formed on the surface in the α-Mg matrix region. A recrystallized layer of columnar crystallites with a thickness of about 1 μm and a lateral size of 0.2–1 μm with inclusions of cubic MgO is formed under it. In the area of the intermetallic compound (phase Mg12YZn–REE type 18R), a three-layer amorphous-crystalline structure is formed: an amorphous layer 15–20 nm thick on the surface, under it a crystalline layer of columnar crystallites 0.1–0.3 μm thick and with lateral dimensions of 0.1–0.5 μm, then an amorphous layer of intermetallic compound about 1 μm thick.

Full Text

Restricted Access

About the authors

A. L. Vasiliev

National Research Center “Kurchatov Institute”; Togliatti State University; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: a.vasiliev56@gmail.com
Russian Federation, Moscow; Togliatti; Dolgoprudny

M. M. Krishtal

Togliatti State University

Email: a.vasiliev56@gmail.com
Russian Federation, Togliatti

Yu. V. Grigoriev

National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

A. V. Polunin

Togliatti State University

Email: a.vasiliev56@gmail.com
Russian Federation, Togliatti

A. O. Rodin

National University of Science and Technology MISIS

Email: a.vasiliev56@gmail.com
Russian Federation, Moscow

Yu. R. Kolobov

Togliatti State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
Russian Federation, Togliatti; Chernogolovka, Moscow Region

References

  1. Фролов К.В. Машиностроение: энциклопедия. Т. II-3. Цветные металлы и сплавы. Композиционные металлические материалы. М.: Машиностроение, 2001. 879 c.
  2. Альтман М.Б., Антипова А.П., Блохина А.П. и др. Металловедение магния и его сплавов. Области применения. М.: Металлургия, 1978. Т. 2. 237 c.
  3. Петров А.А., Сперанский К.А. // Тр. ВИАМ. 2021. № 10 (104). С. 12. https://doi.org/10.18577/2307-6046-2021-0-10-12-27
  4. Мостяев И.В. // Тр. ВИАМ. 2015. № 7. С. 8. https://doi.org/10.18577/2307-6046-2015-0-7-3-3
  5. Фролов А.В., Мухина И.Ю., Леонов А. А. и др. // Тр. ВИАМ. 2016. № 3 (39). С. 23. https://doi.org/10.18577/2307-6046-2016-0-3-3-3
  6. Поповски Ю., Папиров И.И., Шокуров В.С. и др. Патент RU2418878C2. Магниевый сплав с улучшенным сочетанием механических и коррозионных характеристик. 2010.
  7. Лукьянова Е.А. Дис. “Исследование магниевых сплавов с редкоземельными металлами для создания новых легких конструкционных материалов”… канд. тех. наук. М.: ИМЕТ РАН, 2014.
  8. Arun K.S., Rajesh R.J., Jithu K.G. et al. // J. Mater. Eng. Perform. 2022. V. 32. P. 2840. https://doi.org/10.1007/s11665-022-07213-5
  9. Jiang P., Blawert C., Zheludkevich M.L. // Corros. Mater. Degrad. 2020. V. 1. P. 92. https://doi.org/10.3390/cmd1010007
  10. Yamasaki M., Hayashi N., Izumi S., Kawamura Y. // Corrosion Sci. 2009. V. 49. P. 255. https://doi.org/10.1016/j.corsci.2006.05.017
  11. Wan D., Sun Y., Xue Y. et al. // China Foundry. 2024. V. 21. № 11. P. 634. https://doi.org/10.1007/s41230-024-3174-y
  12. Abdel Gawad M., Usman C.A., Shunmugasamy V.C. et al. // J. Magnes. Alloy. 2022. V. 10. № 6. P. 1542. https://doi.org/10.1016/j.jma.2021.11.025
  13. Li C.Q., Xu D.K., Zeng Z.R. et al. // Mater. Des. 2017. V. 121. P. 430. https://doi.org/10.1016/j.matdes.2017.02.078
  14. Pałgan D., Dobkowska A., Zielińska A. et al. // Crystals. 2022. V. 12. P. 1723. https://doi.org/10.3390/cryst12121723
  15. Wang Y., Zhang Y., Wang P. et al. // J. Mater. Res. Technol. 2020. V. 9. № 3. P. 7087. https://doi.org/10.1016/j.jmrt.2020.05.048
  16. Zhang S., Jiang J., Zou X. et al. // Front. Chem. 2022. V. 10. P. 1. https://doi.org/10.3389/fchem.2022.999630
  17. Wu S., Huang J., Fang J. et al. // Surf. Coat. Technol. 2023. V. 470. Р. 129870. https://doi.org/10.1016/j.surfcoat.2023.129870
  18. Li L., Yan D., Zou T. et al. // J. Alloys Compd. 2024. V. 1004. P. 175728. https://doi.org/10.1016/j.jallcom.2024.175728
  19. Божко С.А., Манохин С.С., Колобова Е.Г., Колобов Ю.Р. Патент RU 2691154 C1. Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов. 11.06.2019.
  20. Cheretaeva A.O., Glukhov P.A., Shafeev M.R. et al. // Chimica Techno Acta. 2023. V. 10. № 2. 202310212. https://doi.org/10.15826/chimtech.2023.10.2.12
  21. Schimmel H.G., Huot J., Chapon L.C. et al. // J. Am. Chem. Soc. 2005. V. 127. № 41. P. 14348. https://doi.org/10.1021/ja051508a
  22. Tsirel'son V.G., Avilov A.S., Abramov et al. // Acta Cryst. B. 1998. V. 54. P. 8. https://doi.org/10.1107/S0108768197008963
  23. Itoi T., Seimiya T., Kawamura Y., Hirohashi M. // Scripta Mater. 2004. V. 51. № 2. Р. 107. https://doi.org/10.1016/j.scriptamat.2004.04.003
  24. Петров А.А., Сперанский К.А. // Тр. ВИАМ. 2021. № 11 (105). С. 12. https://doi.org/10.18577/2307-6046-2021-0-11-12-24
  25. Li X.Y., Guo Y.F., Mao Y. et al. // Int. J. Plast. 2022. V. 158. P. 103437. https://doi.org/10.1016/j.ijplas.2022.103437
  26. Zhao S., Xu Y., Lin X. et al. // J. Mater. Res. Technol. 2022. V. 18. P. 461. https://doi.org/10.1016/j.jmrt.2022.02.066
  27. Malik A., Yangwei W., Huanwu C. et al. // Vacuum. 2019. V. 168. P. 108810. https://doi.org/10.1016/j.vacuum.2019.108810
  28. Malik A., Yangwei W., Huanwu C. et al. // J. Mater. Res. Technol. 2019. V. 8. P. 3475. https://doi.org/10.1016/j.jmrt.2019.06.018
  29. Busk R.S. // JOM. 1950. V. 2. P. 1460. https://doi.org/10.1007/BF03399173

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM image of the sample surface (a) obtained in the backscattered electron mode and element distribution maps for Mg (b), Y (c), Zn (d), Zr (d), Nd (f), and Yb (g).

Download (207KB)
3. Fig. 2. SEM image of a crater obtained in the secondary electron mode; the rectangle marks the region from which the lamella was prepared for TEM/STEM/EDX studies.

Download (257KB)
4. Fig. 3. Bright-field TEM (a) and STEM images (b) of the near-surface regions A, B, and C of the sample, exhibiting different contrast, and their electron diffraction patterns (c–d). Pt(e-beam) and Pt(i-beam) are the technological Pt layers formed by electron and ion beams. The arrows indicate the supposed boundary of the layer with the Mg matrix recrystallized as a result of the laser beam action. Arrows t point to the twin, and sf – to the stacking faults.

Download (560KB)
5. Fig. 4. Bright-field TEM image of region B.

Download (337KB)
6. Fig. 5. HRTEM image of the inclined twin boundary (arrows t indicate the boundary outcrops on the lamella surface) and the stacking fault (sf). The insets show the two-dimensional Fourier spectra of two components of the twin.

Download (220KB)
7. Fig. 6. The near-surface layer of region A: a – bright-field TEM image of the region with the porous structure of the crater wall; b – elemental EDX map of the distribution of Pt (blue), O (red), Mg (green); c, d – HRTEM images of the porous region, the inset is the two-dimensional Fourier spectrum with two rings corresponding to the reflections 111 and 002 MgO.

Download (1MB)
8. Fig. 7. Bright-field TEM image of the surface and near-surface layer of the Mg–Zn–REE intermetallic compound (B and C are crystalline and amorphous regions) (a) and HRTEM image of the region highlighted by a rectangle (b), inset – two-dimensional Fourier spectra from the upper part of the image and from the lower one, corresponding to α-Mg with the zone axis [54 10]. Dark-field STEM images of the near-surface region (c, d) and EDX maps of the distribution of elements in the near-surface layer (c). Results of EDX scanning (d) along the line (g) and the corresponding scanning region (e)

Download (748KB)

Copyright (c) 2025 Russian Academy of Sciences