Новый метод синтеза добавок для снижения содержания оксидов серы в газах регенерации процесса каталитического крекинга

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Синтезированы добавки к катализатору крекинга для снижения содержания оксидов серы в газах регенерации при переработке сырья с высоким содержанием серы. Добавки приготовлены на основе смешанных оксидов Mg, Al, Ce, V, выполняющих одновременно окислительную, адсорбционную и восстановительную функции. Синтезы смешанных оксидов на основе гидротальцитов осуществлены с использованием различных осадителей [NaOH+Na2CO3, CO(NH2)2]. Исследованы структурные и каталитические свойства добавок. Показано, что синтезированные добавки проявляют высокую эффективность работы при проведении циклических испытаний «реакция крекинга — регенерация катализатора», которая составила 96.5% при содержании добавки в каталитической системе 5 мас.%.

Texto integral

Acesso é fechado

Sobre autores

Татьяна Бобкова

Институт катализа СО РАН

Autor responsável pela correspondência
Email: sprini@list.ru
ORCID ID: 0000-0002-6542-2082

к. х. н.; Центр новых химических технологий ИК СО РАН

Rússia, Омск, 644040

Константин Дмитриев

Институт катализа СО РАН

Email: sprini@list.ru
ORCID ID: 0000-0003-0704-2468

к. т. н.; Центр новых химических технологий ИК СО РАН

Rússia, Омск, 644040

Олег Потапенко

Институт катализа СО РАН

Email: sprini@list.ru
ORCID ID: 0000-0002-2755-7998

к. х. н.; Центр новых химических технологий ИК СО РАН

Rússia, Омск, 644040

Bibliografia

  1. Maholland M.K. Reducing gasoline Sulphur with additives // Petrol. Technology Quarterly. 2004. V. 9, № 3. P. 71–75.
  2. Каминский Э.Ф. Глубокая переработка нефти: технологический и экологический аспекты. М.: Техника. 2001. 384 с.
  3. Letzsch W. Fluid catalytic cracking (FCC) in petroleum refining // Handbook of Petroleum Processing. 2015. V. 1. Р. 261–316. https://doi.org/10.1007/978-3-319-14529-7_2
  4. Jiang R., Yu S., Zhou Y., Zhu T. Study on the Relation between the Mn/Al mixed oxides composition and performance of FCC sulfur transfer agent // Catalysts. 2016. V. 6, № 2. ID20. https://doi.org/10.3390/catal6020020
  5. Corma A., Palomares A.E., Rey F., Márquez F. Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper, and their possibilities to be used in FCC units // J. Catal. 1997. V. 170, № 1. Р. 140–149. https://doi.org/10.1006/jcat.1997.1750
  6. Pi Z., Shen B., Zhao J., Liu J. CuO, CeO2 modified Mg–Al spinel for removal of SO2 from fluid catalytic cracking flue gas // Ind. Eng. Chem. Res. 2015. V. 54, № 43. P. 10622–10628. https://doi.org/10.1021/acs.iecr.5b02329
  7. Jae L.S., Jun H.K., Jung S.Y., Lee T.J., Ryu C.K., Kim J.C. Regenerable MgO-based SOx removal sorbents promoted with cerium and iron oxide in RFCC // Ind. Eng. Chem. Res. 2005. V. 44, № 26. Р. 9973–9978. https://doi.org/10.1021/ie050607u
  8. Jiang L., Wei M., Xu X., Lin Y., Lü Z., Song J., Duan X. SOx Oxidation and adsorption by CeO2/MgO: synergistic effect between CeO2 and MgO in the fluid catalytic cracking process // Ind. Eng. Chem. Res. 2011. V. 50, № 8. Р. 4398–4404. https://doi.org/10.1021/ie102243y
  9. Pereira H.B., Polato C.M., Monteiro J.L.F., Henriques C.A. Mn/Mg/Al-spinels as catalysts for SOx abatement: Influence of CeO2 incorporation and catalytic stability // Catal. Today. 2010. V. 149, № 3‒4. Р. 309–315. https://doi.org/10.1016/j.cattod.2009.06.006
  10. Li B., Yuan S. Synthesis, characterization, and evaluation of TiMgAlCu mixed oxides as novel SOx removal catalysts // Ceram. Int. 2014. V. 21, № 5. Р. 805–824. https://doi.org/10.1081/LFT-120017451
  11. Kang H.T., Lv K., Yuan S.L. Synthesis, characterization, and SO2 removal capacity of MnMgAlFe mixed oxides derived from hydrotalcite-like compounds // Appl. Clay Sci. 2013. V. 72. Р. 184–190. https://doi.org/10.1016/j.clay.2013.01.015
  12. Cantú M., López-Salinas E., Valente J.S., Montiel R. SOx removal by calcined MgAlFe hydrotalcite-like materials: Effect of the chemical composition and the cerium incorporation method // Environ. Sci. Technol. 2005. V. 39, № 24. Р. 9715–9720. https://doi.org/10.1021/es051305m
  13. Cheng W.P., Yu X.Y., Wang W.J., Liu L., Yang J.G., He M.Y. Synthesis, characterization and evaluation of Cu/MgAlFe as novel transfer catalyst for SOx removal // Catal. Commun. 2008. V. 9, № 6. Р. 1505–1509. https://doi.org/10.1016/j.catcom.2007.12.020
  14. Kong J., Jiang L., Huo Z., Xu X., Evans D.G., Song J., He M., Li Z., Wang Q., Yan L. Influence of the preparation process on the performance of three hydrotalcite-based De-SOx catalysts // Catal. Commun. 2013. V. 40. P. 59–62. https://doi.org/10.1016/j.catcom.2013.05.026
  15. Sanchez-Cantu M., Perez-Diaz L.M., Maubert A M., Valente J.S. Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction // Catal. Today. 2010. V. 150, № 3‒4. Р. 332–339. https://doi.org/10.1016/j.cattod.2009.09.010
  16. Polato C.M.S., Henriques C.A., Neto A.A., Monteiro J.L.F. Synthesis, characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal // J. Mol. Catal. A: Chem. 2005. V. 241, № 1‒2. P. 184–193. https://doi.org/10.1016/j.molcata.2005.07.006
  17. Bhattacharyya A., Yoo J.S. Additives for the catalytic removal of fluid catalytic cracking unit flue gas pollutants // Stud. Surf. Sci. Catal. 1993. V. 76. P. 531–562. https://doi.org/10.1016/S0167-2991(08)63837-9
  18. Hirschberg E.H., Bertolacini R.J. Catalytic control of SOx emissions from fluid catalytic cracking units // Fluid Catalytic Cracking. 1988. P. 114–145. https://doi.org/10.1021/bk-1988-0375.ch008
  19. Scherzer J. Designing FCC catalysts with high-silica Y zeolites // Appl. Catal. 1991. V. 75, № 1. Р. 1–32. https://doi.org/10.1016/S0166-9834(00)83119-X
  20. Magnabosco L.M. Principles of the SOx reduction technology in fluid catalytic cracking units (FCCUs) // Stud. Surf. Sci. Catal. 2007. V. 166. Р. 254–303. https://doi.org/10.1016/S0167-2991(07)80199-6
  21. Evans D.G., Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine // Chem. Commun. 2006. V. 37, № 5. Р. 485–496. https://doi.org/10.1039/b510313b
  22. Oh J., Hwang S., Choy J. The effect of synthetic conditions on tailoring the size of hydrotalcite particles // Solid State Ionics. 2002. V. 151, № 1–4. Р. 285–291. https://doi.org/10.1016/S0167-2738(02)00725-7
  23. Saber O., Hatano B., Tagaya H. Preparation of new layered double hydroxide, Co-TiLDH // J. Ind. Phenom. Macrocycl. Chem. 2005. V. 51. Р. 17‒25. https://doi.org/10.1007/s10847-004-4819-5
  24. Costantino U., Marmottini F., Nocchetti M., Vivani R. New synthetic routes to hydrotalcite-like compounds — characterisation and properties of the obtained materials // Eur. J. Inorg. Chem. 1998. V. 1998, № .10. Р. 1439–1446. https://doi.org/10.1002/(SICI)1099-0682(199810) 1998:10<1439::AID-EJIC1439>3.0.CO;2-1
  25. Zeng H., Deng X., Wang Y., Liao K. Preparation of Mg-Al hydrotalcite by urea method and its catalytic activity for transesterification // AIChE J. 2009. V. 55, № 5. Р. 1229–1235. https://doi.org/10.1002/aic.11722
  26. Rao M.M., Reddy B.R., Jayalakshmi M., Jaya V.S., Sridhar B. Hydrothermal synthesis of Mg–Al hydrotalcites by urea hydrolysis // Materials Research Bulletin. 2005. V. 40, № 2. Р. 347–359. https://doi.org/10.1016/j.materresbull.2004.10.007
  27. Абызов А.М. Измерение удельной поверхности дисперсных материалов методом низкотемпературной адсорбции газа: Практикум. СПб.: СПбГТИ(ТУ), 2016. 37 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Component composition of the additive to the cracking catalyst for reducing the content of sulfur oxides in regeneration gases.

Baixar (284KB)
3. Fig. 2. Schematic diagram of the installation for determining the stable properties of additives to the cracking catalyst to reduce sulfur oxide emissions in regeneration gases (RGF 1 and 2 are gas mass flow controllers, T1 and T2 are temperature sensors).

Baixar (142KB)
4. Fig. 3. Diffraction patterns of synthesized samples calcined at 700°C, GT-1, GT-2 and GT-4: ● — MgO – cubic magnesium oxide; □ — СеО2 – cubic cerianite.

Baixar (134KB)
5. Fig. 4. Cyclic studies of the ability to adsorb sulfur(VI) oxide and reduce sulfated samples during precipitation with a mixture of NaOH + Na2CO3 (a) and urea (b).

Baixar (246KB)
6. Fig. 5. Study of cracking catalyst regeneration (results after 5 cycles of “cracking reaction – catalyst regeneration”).

Baixar (109KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025