Diffusion of radioactive waste elements from underground water and leachates of phosphate waste forms in pore solution of clay materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using through diffusion method at room temperature, migration of RW element simulators (P, Se, Br, Mo, Cs, U) in compacted samples of clay materials of various mineral compositions was studied during porous diffusion from model solutions: underground water and leachates of phosphate waste forms having a total salt content of up to 500 mg/L. Based on the results of experiments, effective diffusion coefficients and sorption distribution coefficients of elements in barrier materials were determined. Numerical models are proposed to describe diffusion transfer of selenium, cesium and uranium depending on porosity, mineral composition of materials, and concentration of elements in pore solution. Patterns of diffusion of elements from solutions of different salt composition were revealed.

Texto integral

Acesso é fechado

Sobre autores

K. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: mark0s@mail.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

E. Zakharova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mark0s@mail.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

Bibliografia

  1. Sellin P., Leupin O.X. // Clays Clay Miner. 2013. Vol. 61. N 6. P. 477.
  2. Wang C., Myshkin V.F., Khan V.A., Panamareva A.N. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 3401.
  3. Мартынов К.В., Захарова Е.В. // Тр. Всерос. ежегод. семинара по экспериментальной минералогии, петрологии и геохимии (Москва, 2022) / Отв. ред. О.А. Луканин. М: ГЕОХИ РАН, 2022. С 379.
  4. Мартынов К.В., Коневник Ю.В., Захарова Е.В. // Радиохимия. 2023. Т. 65. № 4. С. 364.
  5. Ильина О.А., Крупская В.В., Винокуров С.Е., Калмыков С.Н. // Радиоактивные отходы. 2019. № 4(9). С. 71.
  6. Абрамов А.А., Большов Л.А., Дорофеев А.Н., Игин И.М., Казаков К.С., Красильников В.Я., Линге И.И., Трохов Н.Н., Уткин С.С. // Радиоактивные отходы. 2020. № 1 (10). С. 9.
  7. Вашман А.А., Демин А.В., Крылова Н.В., Кушников В.В., Матюнин Ю.И., Полуэктов П.П., Поляков А.С., Тетерин Э.Г. Фосфатные стекла с радиоактивными отходами / Под ред. А.А. Вашмана, А.С. Полякова. М.: ЦНИИатоминформ, 1997. 172 с.
  8. Кочкин Б.Т., Мальковский В. И., Юдинцев С.В. Научные основы оценки безопасности геологической изоляции долгоживущих радиоактивных отходов (Енисейский проект). М.: ИГЕМ РАН, 2017. 384 с.
  9. Мартынов К.В., Захарова Е.В., Кулюхин С.А. // Радиоактивные отходы. 2022. № 2 (19). С. 68.
  10. Мартынов К.В., Захарова Е.В. // Радиоактивные отходы. 2023. № 2 (23). С. 63.
  11. Garcia-Gutierrez M., Cormenzana J.L., Missana T., Mingarro M., Molinero J. // J. Iber. Geol. 2006. Vol. 32. N 1. P. 37.
  12. Martynov K.V., Konstantinova L.I., Konevnik Yu.V., Proshin I.M., Zakharova E.V. // Exp. Geosci. 2014. Vol. 20. N 1. P. 94.
  13. Muurinen A., Pemtilä-Hiltunen P., Uusheimo K. // MRS Online Proc. Library. 1988. Vol. 127. P. 743.
  14. Muurinen A., Ollila K., Lehikoinen J. // MRS Online Proc. Library. 1992. Vol. 294. P. 409.
  15. Kozaki T., Sato Y., Nakajima M., Kato H., Sato S., Ohashi H. // J. Nucl. Mater. 1999. Vol. 270. P. 265.
  16. Joseph C., Van Loon L.R., Jakob A., Steudtner R., Schmeide K., Sachs S., Bernhard G. // Geochim. Cosmochim. Acta. 2013. Vol. 109. P. 74.
  17. Tachi Y., Yotsuji K. // Geochim. Cosmochim. Acta. 2014. Vol. 132. P. 75.
  18. Wang Z., Wang H., Li O., Xu M., Guo Y., Li J., Wu T. // Appl. Geochem. 2016. Vol. 73. P. 1.
  19. Wu T., Wang Z., Wang H., Zhang Z., Van Loon L.R. // Appl. Clay Sci. 2017. Vol. 141. P. 104.
  20. Wang Z., Wu T., Ren P., Hua R., Wu H., Xu M., Tong Y. // J. Radioanal. Nucl. Chem. 2019. Vol. 322. P. 801.
  21. Kong J., Lee C.-P., Sun Y., Hua R., Liu W., Wang Z., Li Y., Wang Y. // J. Radioanal. Nucl. Chem. 2021. Vol. 328. P. 717.
  22. Fukatsu Y., Yotsuji K., Ohkubo T., Tachi Y. // Appl. Clay Sci. 2021. Vol. 211. Art. 106176.
  23. Wu T., Geng Z., Feng Z., Pan G., Shen Q. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 4. P. 2311.
  24. Zhu C.-M., Ye W.-M., Chen Y.-G., Chen B., Cui Y.-J. // Eng. Geol. 2013. Vol. 166. P. 74–80.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Types of yield curves for through diffusion, according to data from [4]: ​​1 – for a non-sorbable radionuclide, 2 – for a sorbable radionuclide, 3 – with precipitation from a pore solution for a non-sorbable radionuclide, 4 – with precipitation from a pore solution for a sorbable radionuclide.

Baixar (86KB)
3. Fig. 2. Through diffusion of Cs through a sample of mylonite TZ (ρт = 1.96 g/cm3, L = 3.5 mm) from the model solution MPVI-6: (a) – change in Cs concentration in the source chamber, (b) – total mass of Cs in the source and receiver, (c) – change in the average value of the difference in Cs concentrations in the source and receiver, (d) – specific total mass yield of Cs into the receiver; DeCs = 7.72 × 10–8 cm2/s, KdCs = 26 cm3/g.

Baixar (202KB)
4. Fig. 3. Stationary sections of the curves of the release of elements during diffusion from model solutions through compacted samples of clay materials: (a) – Cs/MPVI, (b) – Cs/MV, (c) – U/MPVI, (d) – U/MV, (d) – Se/MPVI, (e) – Se/MV.

Baixar (531KB)
5. Fig. 4. Stationary sections of the tritium yield curves (NTO) according to the data of work [4] and simulators of radioactive waste elements through compacted samples of clay materials during diffusion from model groundwater (MPVI): (a) – KB, (b) – TB, (c) – TZ, (d) – HB, (d) – KV.

Baixar (526KB)
6. Fig. 5. Stationary sections of the curves of the release of radioactive waste element simulators through compacted samples of clay materials during diffusion from model phosphate glass (PG) leaches: (a) – KB, (b) – TZ, (a) – HB.

Baixar (348KB)
7. Fig. 6. Experimental data on the dependence of the effective diffusion coefficients of selenium, cesium and uranium on the skeleton density of clay materials: this work and [4] – different clays (Table 3); [11] – FEBEX bentonite (Spain): 93% Ca-smectite; [13, 14, 21] – MX-80 bentonite (USA): 88.6% Na-smectite; [15] – Kunipia-F: enriched with 95% Na-montmorillonite from Kunigel-V1 bentonite (Japan); [16] – Opalinus Clay (Switzerland); [17] – Kunipia-P: enriched with 99.9% Na-montmorillonite from Kunigel-V1 bentonite (Japan); [18, 19, 20, 23] – GMZ bentonite (China): 75.4% Na-Ca-montmorillonite; [22] – Ca-montmorillonite (95%) obtained from Kunipia-F.

Baixar (153KB)
8. Fig. 7. Dependences of the effective pore diffusion coefficient of cesium, uranium and selenium from model solutions of MPVI and MV on the total diffusion factor for compacted clay materials: (a) – Cs/MPVI, (b) – Cs/MV, (c) – U/MPVI, (d) – U/MV, (d) – Se/MPVI, (e) – Se/MV.

Baixar (404KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024