Sorption of cesium from strongly alkaline solutions on a modi ed ferrocyanide sorbent «fersal»

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sorption of cesium from solutions of sodium and potassium nitrates, sodium hydroxide, and also from a model solution simulating alkaline high-level waste (HLW) of FSUE PO «Mayak» on various resorcinolformaldehyde sorbents (RFS), on sorbent based on a boron-containing polymer of the Clevasol brand and on sorbent of the Fersal brand based on modi ed nickel ferrocyanide was studied under batch conditions. It is shown that in all the media studied, the Fersal sorbent has the best sorption-selective characteristics with respect to cesium. During the sorption of cesium from a model solution of HLW under dynamic conditions, the volume of the passed solution to 1% breakthrough for the Fersal sorbent is 127 bed volumes (b.v.). The puri cation resource of the other studied sorbents is 3-4 times less. Desorption of cesium from the Fersal sorbent can be carried out by passing 9-10 b.v. 7.5 mol/dm3 HNO3, however, in this case, the sorbent granules are destroyed, which does not allow it to be reused. It is concluded that the Fersal sorbent is the most promising for the treatment of alkaline HLW.

About the authors

V. V. Milyutin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: vmilyutin@mail.ru

N. A. Nekrasova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

P. V. Kozlov

Mayak Production Assosiation

D. V. Markova

Mayak Production Assosiation

References

  1. Козлов П.В., Ремизов М.Б., Макаровский Р.А., Дементьева И.И., Н.А.Лупеха. // Радиоактивные отходы. 2018. № 4 (5). С. 55.
  2. Smirnov I.V., Karavan M.D., Logunov M.V., Tananaev I.G., Myasoedov B.F. // Radiochemistry. 2018. Vol. 60. P. 470.
  3. Smirnov I.V., Stepanova E.S., Tyupina M.Yu., Ivenskaya N.M., Zaripov S.R., Kleshnina S.R., Solovieva S.E., Antipin I.S. // Radiochemistry. 2016. Vol. 58, N 4. P. 381.
  4. Bonnesen P.V., Delmau L.H., Moyer B.A., Lumetta G.J. // Solvent Extr. Ion Exch. 2003. Vol. 21, N 2. P. 141.
  5. Ivenskaya N.M., Stepanova E.S., Logunov M.V., Smirnov I.V. // Radiochemistry. 2018. Vol. 60. P. 378.
  6. Duignan M.R., Nash C.A. // Sep. Sci. Technol. 2010. Vol. 45, N 12-13. P. 1828.
  7. Милютин В.В., Зеленин П.Г., Козлов П.В., Ремизов М.Б., Кондруцкий Д.А. // Радиохимия. 2019. Т. 61, № 6. С. 507.
  8. Wilmarth W.R., Lumetta G.J., Johnson M.E., Poirier M.R., Thompson M.C., Suggs P.C., Machara N.P. // Solvent Extr. Ion Exch. 2011. Vol. 29, N 1. P. 1.
  9. Слюнчев О.М., Истомина Н.М., Старовойтов Н.П., Мальцев А.А., Дудкин В.А., Бобров П.A., Ремизова В.А. // Вопр. радиац. безопасности. 2020. № 3. C. 7.
  10. Милютин В.В., Гелис В.М. // ЖПХ. 1997. Т. 70, №. 12. С. 1967.
  11. Милютин В.В., Михеев С.В., Гелис В.М., Кононенко О.А. // Радиохимия. 2009. Т. 51, № 3. С. 258.
  12. Милютин В.B., Михеев С.В., Гелис В.М., Козлитин Е.А. // Радиохимия. 2009. Т. 51, № 3. С. 261.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences