Interlayer junction for EBG waveguide integrated with a power divider into two channels

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An interlayer junction for three-row EBG waveguides integrated with a two-channel power divider was studied. It is shown that without additional matching such transitions are relatively narrow-band in terms of reflection coefficient in the frequency band 8…12 GHz. To expand the matching band, a modified transition with additional matching rods in both waveguide channels on the power divider layer is proposed. Using numerical analysis, it was found that due to this in the frequency band under study, it is possible to obtain a symmetrical matching curve with two well separated minima and with a matching level no worse than –20 dB in the central part of the range. It is shown that in the structure with matching rods, the operating frequency band by reflection coefficient is significantly expanded in comparison with the original structure.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Bankov

Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS

Хат алмасуға жауапты Автор.
Email: sbankov@yandex.ru
Ресей, St. Mokhovaya, 11, building 7, Moscow, 125009

V. Kalinichev

Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS

Email: sbankov@yandex.ru
Ресей, St. Mokhovaya, 11, building 7, Moscow, 125009

Әдебиет тізімі

  1. Гвоздев В.И., Нефедов Е.И. Объемные интегральные схемы СВЧ. М.: Наука, 1987.
  2. Банков С.Е. Электромагнитные кристаллы. М.: Физматлит, 2010.
  3. Bankov S.E. // PIERS Proc. Moscow (Russia), August 18–21. 2009. P. 1680.
  4. Банков С.Е., Дупленкова М.Д. // Журн. радиоэлектроники. 2009. № 4. http://jre.cplire.ru/jre/apr09/4/text.html
  5. Банков С.Е., Калошин В.А., Фролова Е.В. // Журн. радиоэлектроники. 2009. № 3. http://jre.cplire.ru/jre/mar09/1/text.html
  6. Банков С.Е., Пангонис Л.И., Фролова Е.В. // РЭ. 2010. Т. 55. № 11. С. 1285.
  7. Банков С.Е., Калиничев В.И., Фролова Е.В. // РЭ. 2020. Т. 65. № 9. С. 1.
  8. Ommodt K., Sanzgiri S., German F., Jones T. // Dig. IEEE Antennas and Propagation Soc. Int. Symp. . Baltimore. 21–26 Jul. 1996. N.Y.: IEEE, 1996. V. 2. P. 1334. https://ieeexplore.ieee.org/document/549843
  9. Abdel-Wahab W.M., Al-Saedi H., Palizban A. // Proc. IEEE Int. Symp. on Antennas and Propagation and USNC-URSI Radio Sci. Meeting. Atlanta. 7–12 Jul. 2019. N.Y.: IEEE, 2019. P. 961. https://ieeexplore.ieee.org/document/8889060
  10. Yang T.-H., Chen C.-F., Huang T.-Y. // Proc. Asia-Pacific Microwave Conf. Suzhou, 4–7 Dec. 2005. N.Y.: IEEE, 2005. Article No. 1606978 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1606978
  11. Vahabisani N., Daneshmand M. // Proc. 42nd Europ. Microwave Conf. Amsterdam. 29 Oct. — 1 Nov. 2012. N.Y.: IEEE, 2012. Article No. 6459138. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6459138
  12. Myers J.C., Hejase J.A., Tang J. et al. // IEEE27th Conf. Electrical Performance of Electronic Packaging and Systems (EPEPS). San Jose. 14–17 Oct. 2018. N.Y.: IEEE, 2018. P. 123. https://ieeexplore.ieee.org/document/8534285
  13. Huang Y., Wu K.-L., Ehlert M. // IEEE Microwave Opt. Technol. Lett. 2003. V. 13. № 8. P. 338.
  14. Калиничев В.И., Банков С.Е. // РЭ. 2022. Т. 67. № 7. С. 628.
  15. Сазонов Д.М. Антенны и устройства СВЧ. М.: Высш. школа, 1988.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representations from above (a) and from the side (b) of an interlayer transition with power division into two channels on the upper layer with the designation of the main parameters; 1–3 are the port numbers.

Жүктеу (21KB)
3. Fig. 2. HFSS model for numerical study of interlayer transition with power division into two channels on the upper layer: three-dimensional view (a) and side view

Жүктеу (17KB)
4. Fig. 3. Frequency dependence of the reflection coefficient for N = 0.65 (1), 0.7 (2), 0.75 (3), 0.8 (4), 0.85 (5) and L1 = 6.5, L2 = 8.0.

Жүктеу (14KB)
5. Fig. 4. Frequency dependence of the reflection coefficient for L1 = 6.0 (1), 6.5 (2), 7.0 (3), 7.5 (4) and L2 = 8, N = 0.7.

Жүктеу (14KB)
6. Fig. 5. Frequency dependence of the reflection coefficient for different values ​​of L2 = 6.5 (1), 7.5 (2), 8.0 (3), 9.0 (4), 1.0 (5) and L1 = 6.5, N = 0.7.

Жүктеу (16KB)
7. Fig. 6. Transition matching characteristics corresponding to the best combination of parameters for two cases: D2 = 2, D3 = 4, L1 = 6.5, L2 = 8, N = 0.7 (curve 1), D2 = 1, D3 = 2, L1 = 7, L2 = 8, N = 0.7 (curve 2), and P = 6, D1 = 2, h = 10, t = 1.

Жүктеу (12KB)
8. Fig. 7. Model of the transition structure with additional matching rods on the top layer: (a) — general view; (b) — top view; (c) — side view; 1–3 — port numbers.

Жүктеу (35KB)
9. Fig. 8. Frequency dependence of the reflection coefficient for Mx = 3.0 (1), 3.1 (2), 3.2 (3) and My = 1.6, N = 0.7, P = 6, D1 = 2, L1 = 6.5, L2 = 8.

Жүктеу (18KB)
10. Fig. 9. Matching characteristic for Mx = 3.075 and My = 1.6, N = 0.7, P = 6, D1 = 2, L1 = 6.5, L2 = 8.

Жүктеу (12KB)
11. Fig. 10. Frequency dependence of the reflection coefficient for N = 0.65 (1), 0.7 (2), 0.75 (3) and P = 6, D1 = 2, L1 = 6.5, L2 = 8, Mx = 3.075, My = 1.6.

Жүктеу (15KB)
12. Fig. 11. Frequency dependence of the reflection coefficient for values ​​L1 = 6.0 (1), 6.5 (2), 7.0 (3) and L2 = 8.0, P = 6, D1 = 2, Mx = 3.075, My = 1.6.

Жүктеу (15KB)
13. Fig. 12. Frequency dependence of the reflection coefficient for values ​​L2 = 7.5 (1), 8.0 (2), 8.5 (3) and L1 = 6.5, P = 6, D1 = 2, Mx = 3.075, My = 1.6.

Жүктеу (15KB)
14. Fig. 13. Frequency dependence of the reflection coefficient for My = 1.55 and Mx = 3.0 (1), 3.1 (2), 3.2 (3), as well as N = 0.7, L1 = 6.5, L2 = 8, P = 6, D1 = 2.

Жүктеу (17KB)

© Russian Academy of Sciences, 2024