Achieving Angular Super Resolution Based on the Separation Method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A comprehensive method for increasing the resolution and accuracy of angular measurements by digital antenna arrays is proposed and substantiated. The problem of searching for coordinates of individual objects in the form of a group target, which are not resolved by direct observation, is considered. Mathematically, the problem is reduced to solving Fredholm integral equations of the first kind of convolution type with additional conditions. It is proposed to implement solutions with angular superresolution based on a new method based on excluding one of the components from the analyzed signal. The results of numerical experiments on a mathematical model are presented and analyzed.

Sobre autores

A. Samokhin

Russian Technological University MIREA

Email: absamokhin@yandex.ru
Vernadsky prosp., 78, Moscow, 119454 Russian Federation

A. Samokhina

Trapeznikov Institute of Control Sciences RAS

Profsoyuznaya Str., 65, Moscow, 117997 Russian Federation

Bibliografia

  1. Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. I, II. М.: Изд-во иностр. лит., 1958, 1960.
  2. Uttam S., Goodman N.A. // IEEE Trans. 2010. V. AES-46. № 3. P. 1557.
  3. Park S.C., Park M.K., Kang M.G. // IEEE Signal Processing Magaz. 2003. V. 20. № 3. P. 21.
  4. Kasturiwala S.B., Ladhake S.A. // Int. J. Computer Science and Engineering. 2010. № 5. P. 1659.
  5. Waweru N.P., Konditi D.B.O., Langat P.K. // Int. J. Electrical Computer Energetic Electronic and Commun. Engineering. 2014. V. 8. № 1. P. 209.
  6. Lavate T.B., Kokate V.K., Sapkal A.M. // Proc. 2nd Int. Conf. on Computer and Network Technology (ICCNT-2010). N.Y.: IEEE, 2010. P. 308.
  7. Almeida M.S., Figueiredo M.A. // IEEE Trans. 2013. V. IP-22. № 8. P. 3074.
  8. Евдокимова Н.А., Лукьяненко Д.В., Ягола А.Г. // Вычислительные методы и программирование. 2009. Т. 10. № 2. С. 263.
  9. Lagovsky B.A., Rubinovich E.Y. // Mathematics. 2023. V.11. № 4. Article No. 1056.
  10. Lagovsky B., Samokhin A., Shestopalov Y. // Radio Sci. 2021. V. 5. Issue 3. P. 1.
  11. Lagovsky B.A., Rubinovich E.Y. // Results in Control and Optimization. 2024. V. 14. № 4. Article No. 100405.
  12. Александров А.Е., Борисов С.П., Бунина Л.В. и др. // Русский технолог. журн. 2023. Т. 11. № 3. С. 56.
  13. Лаговский Б.А., Самохин А.Б. // РЭ. 2023. Т. 68. № 3. С. 249.
  14. Lagovsky B., Rubinovich E. // Advances in Systems Science and Applications. 2021. V. 21. № 2. P. 104.
  15. Лаговский Б.А., Самохин А.Б. // РЭ. 2024. Т. 69. № 5. С. 429.
  16. Marquardt D.W. // J. Soc. Industrial and Appl. Math. 1963. V.11. № 2. P. 431.
  17. Lourakis M.I.A., Argyros A.A. // Proc. Tenth IEEE Int. Conf. on Computer Vision. 2005. Beijing. 17–21 Oct. N.Y.: 2005. V.2. P. 1526.
  18. Seber G.A.F., Wild C.J. Nonlinear Regression. N.Y.: John Wiley and Sons, 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025