Determining low-energy characteristics of the pp interaction in the d + 1H → p + p + n reaction

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The study results of the d + 1H → p + p + n reaction are presented. A kinematically complete experiment with using a deuteron beam energy of 15.3 MeV at the U-120 accelerator of the MSU SINP was carried out. A proton from the breakup of the singlet pp state and a secondary neutron were registered in coincidence. As a result of the study, the low-energy characteristics of pp interaction, namely, the energy value of the virtual singlet pp state and the corresponding value of the pp scattering length were determined.

Texto integral

Acesso é fechado

Sobre autores

A. Kasparov

Institute for Nuclear Research of Russian Academy of Sciences

Email: vyacheslavmitsuk@yandex.ru
Rússia, Moscow

M. Mordovskoy

Institute for Nuclear Research of Russian Academy of Sciences

Email: vyacheslavmitsuk@yandex.ru
Rússia, Moscow

V. Mitsuk

Institute for Nuclear Research of Russian Academy of Sciences

Autor responsável pela correspondência
Email: vyacheslavmitsuk@yandex.ru
Rússia, Moscow

V. Lebedev

Moscow State University

Email: vyacheslavmitsuk@yandex.ru

Skobeltsyn Research Institute of Nuclear Physics

Rússia, Moscow

A. Spassky

Moscow State University

Email: vyacheslavmitsuk@yandex.ru

Skobeltsyn Research Institute of Nuclear Physics

Rússia, Moscow

Bibliografia

  1. V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C. 49, 2950 (1994).
  2. Е. С. Конобеевский, С. В. Зуев, М. В. Мордовской, С. И. Поташев, И. М. Шарапов, ЯФ 76, 1479 (2013) [Phys. At. Nucl. 76, 1398 (2013)].
  3. C. Bäumer, D. Frekers, E.-W. Grewe, P. Haefner, S. Hollstein, B. C. Junk, A. Korff, S. Rakers, R. Schmidt, A. M. van den Berg, B. Davids, M. N. Harakeh, M. Hunyadi, M. A. de Huu, H. J. Wörtche, N. Blasi, et al., Phys. Rev. C 71, 044003 (2005).
  4. Е. С. Конобеевский, С. В. Зуев, A. A. Каспаров, В. И. Кукулин, В. М. Лебедев, М. В. Мордовской, В. Н. Померанцев, А. В. Спасский, ЯФ 81, 555 (2018) [Phys. At. Nucl. 81, 595 (2018)].
  5. Е. С. Конобеевский, А. А. Афонин, С. В. Зуев, А. А. Каспаров, В. М. Лебедев, В. В. Мицук, М. В. Мордовской, А. В. Спасский, Изв. РАН. Сер. физ. 84, 492 (2020) [Bull. Russ. Acad. Sci.: Phys. 84, 378 (2020)].
  6. Е. С. Конобеевский, А. А. Афонин, А. А. Каспаров, В. М. Лебедев, В. В. Мицук, М. В. Мордовской, А. В. Спасский, С. В. Зуев, Изв. РАН. Сер. физ. 85, 685 (2021) [Bull. Russ. Acad. Sci.: Phys. 85, 530 (2021)].
  7. A. A. Kasparov, M. V. Mordovskoy, V. V. Mitsuk, V. M. Lebedev, and A. V. Spassky, Bull. Russ. Acad. Sci.: Phys. 88, 1189 (2024).
  8. J. R. Bergervoet, P. C. van Campen, W. A. van der Sanden, and J. J. de Swart, Phys. Rev. C 38, 15 (1988).
  9. H. Brückmann, W. Kluge, H. Matthäy, L. Schänzler, and K. Wick, Phys. Lett. B 30, 460 (1969).
  10. Zhang Ying-ji, Yang Jin-qing, Zhang Jie, and He Jian-hua, Phys. Rev. C. 45, 528 (1992).
  11. G. A. Miller, B. M. K. Nefkens, and I. Šlaus, Phys. Rep. 194, 1 (1990).
  12. А. А. Каспаров, М. В. Мордовской, А. А. Афонин, С. И. Поташев, В. В. Мицук, ЯФ 86, 245 (2023) [Phys. At. Nucl. 86, 44 (2023)]
  13. В. И. Кукулин, В. Н. Померанцев, О. А. Рубцова, М. Н. Платонова, ЯФ 82, 521 (2019) [Phys. At. Nucl. 82, 934 (2019)].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental setup designed based on the results of kinematic modeling: 1 — vacuum scattering chamber (∅ 23 cm with a 20 μm thick lavsan exit window), 2 — CH2 target (30 μm thick), 3 — neutron detector (∅ 5 cm, 5 cm thick), 4 — ΔE detector (∅ 5 mm, 25 μm thick), 5 — E detector (∅ 10 mm, 1000 μm thick).

Baixar (138KB)
3. Fig. 2. Experimental ∆E–E diagram. “Spots” correspond to reactions: 1 — d + p → d + p; 2 — d + 12C → d + 12C; 3 — d + 12C → p + 13C; 4 — d + p → p + d. The gray area on the proton locus is the simulated events from the breakup of the singlet pp system with Epp = 400 ± 100 keV and the emission angle of both protons in the range of 18° ± 2°.

Baixar (635KB)
4. Fig. 3. Energy correlations Ep – En measured in the reaction d + 1H → p + p + n at Θp = 18° ± 2° and Θn = 38° ± 1.5°.

Baixar (369KB)
5. Fig. 4. The final spectrum of proton energy measured in coincidence with neutrons, depending on the emission angle of the second undetected proton Θp = 18° ± 0.5° (dotted curve), Θp = 18° ± 2° (solid) and Θp = 18° ± 4° (dashed).

Baixar (205KB)
6. Fig. 5. Comparison of the experimentally obtained proton energy spectrum with the simulated spectra corresponding to Epp = 200 ± 10 (dotted curve), 400 ± 50 (solid), 600 ± 50 keV (dashed).

Baixar (152KB)
7. Fig. 6. Dependence of χ2 on ΔEpp for different values ​​of Epp. The curves correspond to the values ​​of Epp: 1 — 330, 2 — 340, 3 — 350, 4 — 360, 5 — 375 keV.

Baixar (198KB)
8. Fig. 7. Dependence of χ2 on Epp. Each value of Epp corresponds to its optimal value ΔEpp opt. The curve is an approximation by a quadratic polynomial. The dashed lines show errors in determining Epp.

Baixar (126KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025