Precise calculation of one-loop radiative corrections in møller scattering

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The detailed analytical calcualtion of one-loop electromagnetic radiative corrections (ERC) in Møller scattering beyond ultrarelativistic approximation (taking into accout all masses) is presented. The infrared divergence (IRD) is extracted using the covariant Bardin–Shumeiko approach. The succesful numerical comparison of radiative effects with the well-known results using for IRD extraction alternative approaches is done in the wide kinematical range. A kinematic region is found in which it is needed to avoid the ultrarelativistic effects in order to get the exact estimation of radiative effects.

Texto integral

Acesso é fechado

Sobre autores

V. Zykunov

JINR; Francisk Skorina Gomel State University

Autor responsável pela correspondência
Email: zykunov@cern.ch
Rússia, Dubna, Moscow region; Gomel, Belarus

A. Ilyichev

Belarusian State University; Institute for Nuclear Problems

Email: ily@hep.by
Belarus, Minsk; Minsk

Bibliografia

  1. A. Schmidt, C. O’Connor, J. C. Bernauer, and R. Milner, Nucl. Instrum. Methods A 877, 112 (2018).
  2. T. Benisch, S. Bernreuther, E. Devitsin, V. Kozlov, S. Potashov, K. Rith, A. Terkulov, and C. Weiskopf, Nucl. Instrum. Methods A 471, 314 (2001).
  3. C. S. Epstein, R. Johnston, S. Lee, J. C. Bernauer, R. Corliss, K. Dow, P. Fisher, I. Friscic, D. Hasell, R. G. Milner, et al., Phys. Rev. D 102, 012006 (2020).
  4. MOLLER Collab. (J. Benesch et al.), arXiv: 1411.4088 [nucl-ex].
  5. A. Gasparian, D. Dutta, H. Gao, and M. Khandaker, Jefferson Laboratory Experiment E12-11-106 (2011).
  6. W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, X. Bai, L. Ye, K. Gnanvo, C. Gu, M. Levillain, X. Yan, D. W. Higinbotham, M. Meziane, et al., Nature 575, 147 (2019).
  7. A. Gasparian, H. Gao, D. Dutta, N. Liyanage, E. Pasyuk, D. W. Higinbotham, C. Peng, K. Gnanvo, I. Akushevich, A. Ahmidouch, C. Ayerbe, X. Bai, H. Bhatt, D. Bhetuwal, J. Brock, V. Burkert, et al., arXiv: 2009.10510v1 [nucl-ex].
  8. N. Kaiser, J. Phys. G 37, 115005 (2010).
  9. L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
  10. D. Yu. Bardin and N. M. Shumeiko, Nucl. Phys. B 127, 242 (1977).
  11. N. M. Shumeiko and J. G. Suarez, J. Phys. G 26, 113 (2000).
  12. A. N. Ilyichev and V. A. Zykunov, Phys. Rev. D 72, 033018 (2005); hep-ph/0504191.
  13. A. Afanasiev, Eu. Chudakov, A. Ilyichev, and V. Zykunov, Comput. Phys. Commun. 176, 218 (2007); JLAB-PHY-06-456, hep-ph/0603027.
  14. I. Akushevich, H. Gao, A. Ilyichev, and M. Meziane, Eur. Phys. J. A 51, 1 (2015).
  15. S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, and V. L. Yermolchyk, arXiv: 2203.10538 [hep-ph].
  16. P. Banerjee, T. Engel, N. Schalch, A. Signer, and Y. Ulrich, Phys. Rev. D 105, L031904 (2022).
  17. S. Frixione, Z. Kunszt, and A. Signer, Nucl. Phys. B 467, 399 (1996).
  18. R. Frederix, S. Frixione, F. Maltoni, and T. Stelzer, JHEP 0910003 (2009).
  19. T. Engel, A. Signer, and Y. Ulrich, JHEP 2001085 (2020).
  20. В. А. Зыкунов, ЯФ 80, 388 (2017) [Phys. At. Nucl. 80, 699 (2017)].
  21. В. А. Зыкунов, ЯФ 83, 246 (2020) [Phys. At. Nucl. 83, 463 (2020)].
  22. В. А. Зыкунов, ЯФ 84, 447 (2021) [Phys. At. Nucl. 84, 739 (2021)].
  23. A. Afanasev and A. Ilyichev, Eur. Phys. J. A 57, 280 (2021).
  24. Y. S. Tsai, Phys. Rev. 122, 1898 (1961).
  25. A. Afanasev and A. Ilyichev, Eur. Phys. J. A 58, 156 (2022).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Feynman diagrams for the Möller process e–e– → e–e– in the single-photon exchange approximation: a – t-channel, b – u-channel.

Baixar (41KB)
3. Fig. 2. Feynman t-channel diagrams of the contributions of virtual particles: vertex functions (a, b), self-energies (c), direct (d) and cross (d) two-photon exchange to the MR process.

Baixar (64KB)
4. Fig. 3. Feynman t-channel diagrams of contributions with the emission of a bremsstrahlung photon in MR.

Baixar (62KB)
5. Fig. 4. Relative corrections to the cross section for different electron beam energies depending on –t under different constraints on inelasticity: solid curves are the result of this work, dotted curves are the result presented in [22], the vertical exact line is the upper limit on the variable –t.

Baixar (337KB)
6. Fig. 5. Relative corrections to the cross section for different electron beam energies as a function of –t for different restrictions on the maximum energy of the bremsstrahlung photon. For other designations, see Fig. 4.

Baixar (310KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024