Effect of Chitosan on the Electronic State and Distribution of Rhodium on the Zeolite Catalyst Surface According to Data on IR Spectroscopy of Adsorbed Carbon Monoxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Zeolite catalysts for the conversion of dimethyl ether to light olefins with a monoatomic distribution of rhodium are studied via infrared spectroscopy of the diffuse reflection of adsorbed carbon monoxide and X-ray absorption spectroscopy. The zeolite is preliminarily treated with ultrasound to obtain a monatomic distribution of the active component on the support’s surface, and a polymer (chitosan hydrochloride) is used as the medium for dispersing rhodium at the stage of impregnation. A sample prepared via the traditional impregnation of zeolite with an aqueous solution of rhodium chloride is studied for purposes of comparison. It is shown that rhodium in the structure of zeolite treated with ultrasound is in the form of isolated metal centers whether it is deposited with or without a polymer. Synthesis with chitosan results in a more disperse distribution of rhodium on the outer surface of the zeolite and greater oxidizing ability of the catalyst.

作者简介

M. Shilina

Faculty of Chemistry, Moscow State University

Email: batova.ti@ips.ac.ru
119991, Moscow, Russia

T. Obukhova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: batova.ti@ips.ac.ru
119071, Moscow, Russia

T. Batova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: batova.ti@ips.ac.ru
119071, Moscow, Russia

N. Kolesnichenko

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: batova.ti@ips.ac.ru
119071, Moscow, Russia

参考

  1. Naranov E.R., Dement’ev K.I., Gerzeliev I.M. et al. // Pet. Chem. 2019. V. 59. № 3. P. 247. https://doi.org/10.1134/S0965544119030101
  2. Kolesnichenko N.V., Ezhova N.N., Snatenkova Yu.M. // Russ. Chem. Rev. 2020. V. 89. № 2. P. 191. [Колесниченко Н.В., Ежова Н.Н., Снатенкова Ю.М. // Успехи химии. 2020. Т. 89. № 2. С. 191. https://doi.org/10.1070/RCR4900].10.1070/RCR4900
  3. Khadzhiev S.N., Ezhova N.N., Yashina O.V. // Pet. Chem. 2017. V. 57. № 7. P. 553. [Хаджиев С.Н., Ежова Н.Н., Яшина О.В. // Нефтехимия. 2017. Т. 2. № 1. С. 3. https://doi.org/10.1134/S241421581701004X]https://doi.org/10.1134/S0965544117070040
  4. Ezhova N.N., Kolesnichenko N.V., Batova T.I. // Pet. Chem. 2020. V. 60. № 4. P. 459. [Ежова Н.Н., Колесниченко Н.В., Батова Т.И. // Нефтехимия. 2020. Т. 2. № 1. С. 74. https://doi.org/10.53392/27130304_2020_2_1_74]https://doi.org/10.1134/S0965544120040064
  5. Samantaray M.K., D’Elia V., Pump E. et al. // Chem. Rev. 2020. V. 120. P. 734. https://doi.org/10.1021/acs.chemrev.9b00238
  6. Ding Sh., Hülsey M.J., Pérez-Ramírez J., Yan N. // Joule. 2019. V. 3. P. 2897. https://doi.org/10.1016/j.joule.2019.09.015
  7. Bai S., Liu F., Huang B. et al. // Nat. Commun. 2020. V. 11. P. 954. https://doi.org/10.1038/s41467-020-14742-x
  8. Zhang T., Chen Z., Walsh A.G. et al. // Adv. Mater. 2020. V. 32. № 44. P. 2002910. https://doi.org/10.1002/adma.202002910
  9. Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. № 21. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
  10. Budiman A.W., Nam J.S., Park J.H. et al. // Catal. Surv. Asia. 2016. V. 20. P. 173.https://doi.org/10.1007/s10563-016-9215-9
  11. Ren Z., Lyu Y., Song X. et al. // Adv. Mater. 2019. V. 31. P. 1904976. https://doi.org/10.1002/adma.201904976
  12. Ren Z., Lyu Y., Feng S. et al. // Mol. Catal. 2017. V. 442. P. 83. https://doi.org/10.1016/j.mcat.2017.09.007
  13. Park K., Lim S., Baik J.H. et al. // Catal. Sci. Technol. 2018. V. 8. P. 2894. https://doi.org/10.1039/C8CY00294K
  14. Saikia P.K., Sarmah P.P., Borah B.J. et al. // J. Mol. Catal. A: Chem. 2016. V. 412. P. 27. https://doi.org/10.1016/j.molcata.2015.11.015
  15. Qi J., Finzel J., Robatjazi H.et al. // J. Am. Chem. Soc. 2020. V. 142. № 33. P. 14178. https://doi.org/10.1021/jacs.0c05026
  16. Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
  17. Batova T.I., Obukhova T.K., Stashenko A.N. et al. // Pet. Chem. 2022. V. 62. P. 425. https://doi.org/10.1134/S0965544122020165
  18. Babucci M., Guntida A., Gates B.C. // Chem. Rev. 2020. V. 120. № 21. P. 11956. https://doi.org/10.1021/acs.chemrev.0c00864
  19. Ogino I., Gates B.C. // J. Phys. Chem. C. 2010. V. 114. № 18. P. 8405. https://doi.org/10.1021/jp100673y
  20. Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
  21. Asokan C., Thang H.V., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
  22. Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
  23. Hou Y., Ogasawara S., Fukuoka A., Kobayashi H. // Catal. Sci. Technol. 2017. V. 7. P. 6132. https://doi.org/10.1039/C7CY02183F
  24. Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
  25. Trofimova N., Veligzhanin A., Murzin V. et al. // Ross. Nanotechnol. 2013. V. 8. P. 396. https://doi.org/10.1134/S1995078013030191
  26. Ravel B., Newville M. // J. Synchrotron. Rad. 2005. V. 12. P. 537 https://doi.org/10.1107/S0909049505012719
  27. Newille M. // J. Synchrotron. Rad. 2001. V. 8. 322. https://doi.org/10.1107/S0909049500016964
  28. Sun Q., Wang N., Zhang T. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 51. P. 18570. https://doi.org/10.1002/anie.201912367
  29. Liang A.J., Gates B.C. // J. Phys. Chem. C. 2008. V. 112. P. 18039. https://doi.org/10.1021/jp805917g
  30. Kolesnichenko N.V., Snatenkova Y.M., Batova T.I. et al. // Microporous Mesoporous Mater. 2022. V. 330. P. 111581. https://doi.org/10.1016/j.micromeso.2021.111581
  31. Bulanek R., Voleska I., Ivanova E. et al. // J. Phys. Chem. C. 2009. V. 113. № 25. P. 11066. https://doi.org/10.1021/jp901575p
  32. Voleská I., Nachtigall P., Ivanova E. et al. // Catal. Today. 2015. V. 243. P. 53. https://doi.org/10.1016/j.cattod.2014.07.029
  33. Arean C.O., Nachtigallova D., Nachtigall P. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. No. 12. P. 1421. https://doi.org/10.1039/b615535a
  34. Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. p.668.
  35. Shilina M.I., Udalova O.V., Nevskaya S.M. // Kinet. Catal. 2013. V. 54. P. 691. [Шилина М.И, Удалова О.В., Невская С.М. // Кинетика и катализ. 2013. Т. 54. № 6. С. 731. https://doi.org/10.7868/S0453881113060117]https://doi.org/10.1134/S0023158413060116
  36. Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // J. Catal. 2005. V. 236. P. 168–171. https://doi.org/10.1016/j.jcat.2005.09.017
  37. Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007

补充文件

附件文件
动作
1. JATS XML
2.

下载 (302KB)
3.

下载 (90KB)
4.

下载 (259KB)
5.

下载 (67KB)

版权所有 © М.И. Шилина, Т.К. Обухова, Т.И. Батова, Н.В. Колесниченко, 2023