Crystal Structure and Properties of Complex Oxides (Nd,Ba)(Co,Fe)O3–δ

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The homogeneity ranges and crystal structure of solid solutions of Nd1−x1BaxCo1−y1FeyO3−δ3 composition were detected. Depending on introduced barium concentration Nd1−x1BaxCo1−y1FeyO3−δ3 oxides have been crystallized in the orthorhombically distorted (x = 0.05, sp. gr. Pbnm), cubic (0.6 ≤ x ≤ 0.9, sp. gr. Pm-3m) perovskite structure or double perovskite structure NdBaCo2−x2FexO5+δ5 (0.0 ≤ x ≤ 1.4, sp. gr. P4/mmm). The dependencies of unit cell parameters versus composition of the Nd1−x1BaxCo1−y1FeyO3−δ3 solid solutions were obtained. It is shown that the values of oxygen nonstoichiometry in Nd1−x1BaxCo1−y1FeyO3−δ3, determined by a thermogravimetric method within the temperature range 298–1373 K in air, increased with the raise of barium and cobalt content. Average values of thermal expansion coefficients for the Nd1−x1BaxCo1−y1FeyO3−δ3 oxides (0.8 ≤ x ≤ 0.9 and 0.7 ≤ y ≤ 0.9) visibly increased with temperature from (13.5–14.5) × 10–6 K–1 at 300–700 K up to (23.2–26.2) × 10–6 K–1 at 700–1373 K.

Авторлар туралы

T. Aksenova

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: TV.Aksenova@urfu.ru
620002, Yekaterinburg, Russia

N. Volkova

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: TV.Aksenova@urfu.ru
620002, Yekaterinburg, Russia

V. Legonkova

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: TV.Aksenova@urfu.ru
620002, Yekaterinburg, Russia

V. Cherepanov

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина

Хат алмасуға жауапты Автор.
Email: TV.Aksenova@urfu.ru
Россия, 620002, Екатеринбург

Әдебиет тізімі

  1. Maignan A., Martin C., Pelloquin D. et al. // J. Solid State Chem. 1999. V. 142. P. 247.
  2. Anderson P.S., Kirk C.A., Knudsen J. et al. // Solid State Sci. 2005. V. 7. P. 1149.
  3. Pralong V., Caignaert V., Herbert S. et al. // Solid State Ionics. 2006. V. 177. P. 1879.
  4. Аксенова Т.В., Гаврилова Л.Я., Цветков Д.С. и др. // Журн. физ. химии. 2011. Т. 85. № 3. С. 493.
  5. Kim J.H., Manthiram A. // J. Electrochem. Soc. 2008. V. 155. P. B385.
  6. Jarry A., Luetkens H., Pashkevich Y.G. et al. // Phys. B. 2009. V. 404. P. 765.
  7. Zhao L., He B., Zhiqin X. et al. // Int. J. Hydrogen Energy. 2010. V. 35. P. 753.
  8. Burley J.C., Mitchel J.F., Short S. et al. // J. Solid State Chem. 2003. V. 170. P. 339.
  9. Donazzi A., Pelosato R., Cordaro G. et al. // Electrochim. Acta. 2015. V. 182. P. 573.
  10. Karen P., Woodward P.M. // J. Mater. Chem. 1999. V. 9. P. 789.
  11. Karen P., Woodward P.M., Santhosh P.N. et al // J. Solid State Chem. 2002. V. 167. P. 480.
  12. Kim Y.N., Kim J.-H., Manthiram A. // J. Power Sources. 2010. V. 195. P. 6411.
  13. Tsvetkov D.S., Ivanov I.L., Zuev A.Yu. // J. Solid State Chem. 2013. V. 199. P. 154.
  14. Volkova N.E., Gavrilova L.Ya., Cherepanov V.A. et al. // Ibid. 2013. V. 204. P. 219.
  15. Cherepanov V.A., Aksenova T.V., Gavrilova L.Ya. et al. // Solid State Ionics. 2011. V. 188. P. 53.
  16. Yan J., Jiang Sh., Song T. et al. // Biomass and Bioener. 2021. V.151. P. 106154.
  17. Sun L., Qin H., Wang K. et al. // Mater. Chem. Phys. 2011. V. 125. P. 305.
  18. Волкова Н.Е., Урусова А.С., Гаврилова Л.Я. и др. // Журн. общ. химии. 2016. Т. 86. № 8. С. 1258.
  19. Kundu A.K., Mychinko M.Yu., Caignaert V. et al. // J. Solid State Chem. 2015. V. 231. P. 36.
  20. Volkova N.E., Lebedev O.I., Gavrilova L.Ya. et al. // Chem. Mater. 2014. V. 26. № 21. P. 6303.
  21. Kundu A.K., Lebedev O.I., Volkova N.E. et al. // J. Mater. Chem. C. 2015. V. 3. № 21. P. 5398.
  22. Aksenova T.V., Volkova N.E., Maignan A., Cherepanov V.A. // J. Am. Cer. Soc. 2022. V. 105. № 5. P. 3601.
  23. Jiang L., Li F., Wei T. et al. // Electrochim. Acta. 2014. V. 133. P. 364.
  24. Sun J., Liu X., Han F. et al. // Solid State Ionics. 2016. V. 288. P. 54.
  25. Yi K., Sun L., Li Q. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 10228.
  26. Meng F., Xia T., Wang J. et al. // J. Power Sources. 2015. V. 293. P. 741.
  27. Jiang X., Xu Q., Shi Y. et al. // J. Power Sources. 2014. V. 39. P. 10817.
  28. Dong F., Ni M., Chen Y. et al. // J. Mater. Chem. A 2014. V. 2. P. 20520.
  29. Аксенова Т.В., Элкалаши Ш.И., Урусова А.С., Черепанов В.А. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1092.
  30. Knížek K., Hejtmánek J., Jirák Z. et al. // Phys. Rev. B. 2009. V. 79. P. 134103.
  31. Scherrer B., Harvey A.S., Tanasescu S. et al. // Phys. Rev. B. 2011. V. 84. P. 085113.
  32. Raccah P.M., Goodenough J.B. // Phys. Rev. 1967. V. 155. № 3. P. 932.
  33. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
  34. Volkova N.E., Bazueva M.V., Aisarinova D.T. et al. // J. Alloys Compd. 2021. V. 860. P. 158438.
  35. Gavrilova L.Ya., Aksenova T.V., Volkova N.E. et al. // J. Solid State Chem. 2011. V. 184. P. 2083.
  36. Lide D.R. CRC Handbook of Chemistry and Physics, 87th edition, Taylor and Francis, CRC Press, 2007.
  37. Elkalashy Sh.I., Aksenova T.V., Urusova A.S., Cherepanov V.A. // Solid State Ionics. 2016. V. 295. P. 96.
  38. Elkalashy Sh.I., Gilev A.R., Aksenova T.V. et al. // Ibid. 2018. V. 316. P. 85.

© Т.В. Аксенова, Н.Е. Волкова, В.С. Легонькова, В.А. Черепанов, 2022