Quantum chemical study of the reaction of N,O-dimethylcarbamate with methylamine monomer and dimer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reactions of N,O-dimethylcarbamate with methylamine monomer and dimer as a model for the polyurea preparation are studied by B3LYP and M06 quantum-chemical methods. Both a one-step interaction mechanism and a two-step route with an intermediate formed containing a tetracoordinated carbon atom are considered. The latter route is unlikely since the formation of the intermediate is characterized by small values of the equilibrium constants. Reactions involving the methylamine dimer are more favorable kinetically and thermodynamically. Kinetic preference of reactions with methylamine dimer participation is due to its increased donor and acid-base properties as compared to its monomer. The thermodynamic preference of interaction with methylamine dimer is due to a higher entropy of transformation as compared to the reaction with its monomer.

Full Text

Restricted Access

About the authors

A. Y. Samuilov

Kazan National Research Technological University

Email: ysamuilov@yandex.ru
Russian Federation, Kazan

E. P. Kozhanova

Kazan National Research Technological University

Email: ysamuilov@yandex.ru
Russian Federation, Kazan

Ya. D. Samuilov

Kazan National Research Technological University

Author for correspondence.
Email: ysamuilov@yandex.ru
Russian Federation, Kazan

References

  1. Shojaei B., Najafi M., Yazdanbakhsh A. et al. // Polym. Adv. Technol. 2021. V.32. № 8. P. 2797. https://doi.org/10.1002/pat.5277
  2. Wang Y., Ding L., Lin J. et al. // Polymers. 2024. V. 16. № 3. P. 440. https://doi.org/10.3390/polym16030440
  3. Leventis N. // Polymers. 2022. V. 14. № 5. P. 969. https://doi.org/10.3390/polym14050969
  4. Zhang Z., Qian L., Cheng J. et al. // Chem. Mater. 2023. V. 35. № 4. P. 1806. https://doi.org/10.1021/acs.chemmater.2c03782
  5. Zhang Z., Qian L., Huang G. et al. // Adv. Funct. Mater. 2024. V. 34. № 4. P. 2310603. https://doi.org/10.1002/adfm.202310603
  6. Polyurea: Synthesis, Properties, Composites, Production, and Applications / Eds. P. Pasbakhsh, D. Mohotti, K. Palaniandy et al. Amsterdam: Elsevier, 2023. 430 p.
  7. Tripathi M., Parthasarathy S., Roy P.K. // J. Appl. Polym. Sci. 2020. V. 137. № 16. P. 48573. https://doi.org/10.1002/app.48573
  8. Sonnenschein M.F. Polyurethanes: science, technology, markets, and trends. Hoboken: Wiley, 2021. 492 p.
  9. Isocyanates: Sampling, Analysis, and Health Effects / Eds. J. Lesage, I. DeGraff, R. Danchik. West Conshohocken: ASTM Int., 2001. 133 p.
  10. MDI and TDI: safety, health and the environment: a source book and practical guide / Eds. D.C. Allport, D.S. Gilbert, S.M. Outterside. Chichester: Wiley, 2003. 438 p.
  11. Santana J.S., Cardoso E.S., Triboni E.R. et al. // Polymers. 2021. V. 13. № 24. P. 4393. https://doi.org/10.3390/polym13244393
  12. Pyo S.H., Park J.H., Chang T.S. et al. // CRGSC. 2017. V. 5. P. 61. https://doi.org/10.1016/j.cogsc.2017.03.012
  13. Montero R., Lamas I., León I. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 6. P. 3098. https://doi.org/10.1039/C8CP06416D
  14. Pérez C., León I., Lesarri A. et al. // Ang. Chem. 2018. V. 130. № 46. P. 15332. https://doi.org/10.1002/anie.201808602
  15. Malloum A., Conradie J. // J. Mol. Liq. 2021. V. 336. P. 116199. https://doi.org/10.1016/j.molliq.2021.116199
  16. Brutschy B., Bisling P., Rühl E. et al. // Z. Phys. D – Atoms Molec. Clusters. 1987. V. 5. P. 217. https://doi.org/10.1007/BF01436927
  17. Zhang B.B., Kong X.T., Jiang S.K. et al. // Chin. J. Chem. Phys. 2017. V. 30. № 6. P. 691. https://doi.org/10.1021/acs.jpca.7b08096
  18. Mishra S., Nguyen H.Q., Huang Q.R. et al. // J. Chem. Phys. 2020. V. 153. № 19. P. 194301. https://doi.org/10.1063/5.0025778
  19. Huang Q.R., Endo T., Mishra S. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. № 6. P. 3739. https://doi.org/10.1039/d0cp05745b
  20. Hayama S., Wasse J.C., Skipper N.T. et al. // J. Phys. Chem. B. 2001. V. 106. № 1. P. 11. https://doi.org/10.1080/002689700 10020023
  21. Kosztolányi T., Bakó I., Pálinkás G. // J. Chem. Phys. 2003. V. 118. № 10. P. 4546. https://doi.org/10.1063/1.1543143
  22. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
  23. Becke A.D. // J. Chem. Phys. 1992. V. 96. № 3. P. 2155. https://doi.org/10.1063/1.462066
  24. Becke A.D. // J. Chem. Phys. 1992. V. 97. № 12. P. 9173. https://doi.org/10.1063/1.463343
  25. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
  26. Zhao Y., Truhlar D.C. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
  27. Sholl D.S., Steckel J.A. Density functional theory: a practical introduction / Hoboken: John Wiley & Sons. 2023. 224 p.
  28. Zhao Y., Truhlar D.C. // Acc. Chem. Res. 2008. V. 41. № 2. P. 157. https://doi.org/10.1021/ar700111a
  29. Keeler J., Wothers P. Chemical Structure and Reactivity: an Integrated Approach. Oxford: Oxford University Press. 2014. 877 p.
  30. Maksic Z.B., Kovacevic B., Vianello R. // Chem. Rev. 2012. V. 112. № 10. P. 5240. https://doi.org/10.1021/cr100458v
  31. Cabaleiro-Lago E.M., Rodrı́guez-Otero J. // J. Mol. Struct.: THEOCHEM. 2002. V. 586. № 1–3. P. 225. https://doi.org/10.1016/S0166-1280(02)00068-4
  32. Mishra S., Nguyen H.Q., Huang Q.R. et al. // J. Chem. Phys. 2020. V. 153. № 19. P. 194301. https://doi.org/10.1063/5.0025778
  33. Zipse H., Wang L.H., Houk K.N. // Liebigs Ann. Chem. 1996. V. 1996. № 10. P. 1511. https://doi.org/10.1002/jlac.199619961004
  34. Wang L.H., Zipse H. // Liebigs Ann. Chem. 1996. V. 1996. № 10. P. 1501. https://doi.org/10.1002/jlac.199619961003
  35. Kakuchi R., Fukasawa K., Kikuchi M. et al. // Macromolecules. 2021. V. 54. № 1. P. 364. https://doi.org/10.1021/acs.macromol.0c02078
  36. Zabalov M.V., Levina M.A., Krasheninnikov V.G. et al. // Polymer Sci. Ser. B. 2023. V. 65. № 4. P. 467. https://doi.org/10.1134/S1560090423701063
  37. Zabalov M.V., Tiger R.P., Berlin A.A. // Russ. Chem. Bull. 2012. V. 61. № 3. P. 518. https://doi.org/10.1007/s11172-012-0076-8
  38. Fox J.M., Dmitrenko O., Liao L.A. et al. // J. Org. Chem. 2004. V. 69. № 21. P. 7317. https://doi.org/10.1021/jo049494z
  39. Lawal M.M., Govender T., Maguire G.E. et al. // J. Mol. Model. 2016. V. 22. P. 235. https://doi.org/10.1007/s00894-016-3084-z
  40. Costa P., Pilli R., Pinheiro S. et al. The Chemistry of Carbonyl Compounds and Derivatives. London: RSC, 2022. 814 p.
  41. Smith M.B. Organic Chemistry: An Acid-Base Approach. Boca Raton: CRC Press, 2023. 726 p.
  42. Aue D.H., Webb H.M., Bowers M.T. // J. Am. Chem. Soc. 1976. V. 98. № 2. P. 311. https://doi.org/10.1021/ja00418a001
  43. Radisic D., Xu S., Bowen Jr.K.H. // Chem. Phys. Lett. 2002. V. 354. № 1–2. P. 9. https://doi.org/10.1016/S0009-2614(01)01470
  44. Hunter E.P., Lias S.G. // JPCRD. 1998. V. 27. № 3. P. 413. https://doi.org/10.1063/1.556018
  45. Kozhanova E.P., Samuilov Y.D., Samuilov A.Y. // Theor. Chem. Acc. 2023. V. 142. № 12. P. 132. https://doi.org/10.1007/s00214-023-03074-w
  46. Samuilov A.Y., Balabanova F.B., Samuilov Y.D. // Comp. Theor. Chem. 2014. V. 1049. P. 7. https://doi.org/10.1016/j.comptc.2014.09.010
  47. Samuilov A.Y., Balabanova F.B., Samuilov Y.D. // Comp. Theor. Chem. 2015. V. 1067. P. 33. https://doi.org/10.1016/j.comptc.2015.05.004
  48. Díaz N., Suárez D., Sordo T.L. // Eur. J. Org. Chem. 2001. V. 2001. № 4. P. 793. https://doi.org/10.1002/1099–0690(200102)2001:4<793:: AID-EJOC793>3.0.CO;2-Z
  49. Ehlers J.E., Rondan N.G., Huynh L.K. et al. // Macromolecules. 2007. V. 40. № 12. P. 4370. https://doi.org/10.1021/ma070423m
  50. Said R.B., Kolle J.M., Essalah K. et al. // ACS omega. 2020. V. 5. № 40. P. 26125. https://doi.org/10.1021/acsomega.0c03727
  51. Alvaro C.E.S., Nudelman N.S. // Int. J. Chem. Kinet. 2010. V. 42. № 12. P. 735. https://doi.org/10.1002/kin.20523
  52. Raspoet G., Nguyen M.T., Kelly S. et al. // J. Org. Chem. 1998. V. 63. № 26. P. 9669. https://doi.org/10.1021/jo980642t

Supplementary files

Supplementary Files
Action
1. JATS XML
2. scheme_01

Download (40KB)
3. scheme_02

Download (27KB)
4. scheme_03

Download (29KB)
5. scheme_04

Download (62KB)
6. scheme_05

Download (61KB)
7. Fig. 1. Dependences of the equilibrium constants (Kp) of the transformations of N,O-dimethylcarbamate with the monomer (1) and dimer (2) of methylamine in the gas phase on the temperature (T). The results of calculations by the B3LYP method were used.

Download (84KB)
8. scheme_06

Download (66KB)
9. scheme_07

Download (107KB)
10. scheme_08

Download (70KB)
11. scheme_09

Download (122KB)
12. Fig. 2. Ball-and-stick models of transition states of reactions of N,O-dimethylcarbamate with a-monomer (PS1) and b-dimer (PS2) of methylamine, proceeding along a single-stage pathway. Bond lengths in Ӑ are indicated. Calculation data by the M06/6-311++G(df, p) method.

Download (195KB)
13. scheme_10

Download (194KB)
14. Fig. 3. Ball-and-stick models of transition states of reactions of N,O-dimethylcarbamate with a-monomer (PS3) and b-dimer (PS4) of methylamine, leading to the formation of tetracoordinated intermediate (V). Bond lengths in Ӑ are indicated. Calculation data by the M06/6–311++G(df, p) method.

Download (248KB)
15. scheme_12

Download (76KB)
16. scheme_13

Download (166KB)
17. Fig. 4. Ball-and-stick models of transition states of a – monomolecular (PS5) and b – methylamine monomer-catalyzed (PS6) transition of intermediate (V) to N,N1-dimethylurea. Bond lengths in Ӑ are indicated. Calculation data by the M06/6–311++G(df, p) method.

Download (269KB)

Copyright (c) 2025 Russian Academy of Sciences