Thermal Stability of the Al–2.3%V Powder Compared with That of Al Used on 3D Printers Depending on the Heating Rate
- Autores: Shevchenko V.G.1, Eselevich D.A.1, Popov N.A.1, Baklanov M.N.1, Vinokurov Z.S.2, Kim G.A.3
 - 
							Afiliações: 
							
- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
 - SKIF Multiaccess Center, Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
 - Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
 
 - Edição: Volume 97, Nº 10 (2023)
 - Páginas: 1528-1534
 - Seção: ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ ГОРЕНИЯ И ВЗРЫВА
 - ##submission.dateSubmitted##: 26.02.2025
 - ##submission.datePublished##: 01.10.2023
 - URL: https://clinpractice.ru/0044-4537/article/view/668646
 - DOI: https://doi.org/10.31857/S0044453723100199
 - EDN: https://elibrary.ru/GRKKCT
 - ID: 668646
 
Citar
Texto integral
Resumo
The oxidation stability and phase formation sequence for pure aluminum APK and Al–2.3%V alloy heated in air at rates of up to 100°C/min were analyzed by thermogravimetry with differential scanning calorimetry and X-ray diffraction using synchrotron radiation. It was established that an increase in the heating rate from 10 to 100°C/min does not significantly change the thermal stability of the modified Al powder. The presence of Al3V and Al10V intermetallic compounds, as well as a small amount of γ-Al2O3, in the structure of the alloy should favor consolidation of metal particles and reduce the porosity of the resulting product during selective laser melting (SLM).
Palavras-chave
Sobre autores
V. Shevchenko
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: shevchenko@ihim.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
D. Eselevich
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: shevchenko@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
N. Popov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: shevchenko@ihim.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
M. Baklanov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: shevchenko@ihim.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
Z. Vinokurov
SKIF Multiaccess Center, Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
														Email: shevchenko@ihim.uran.ru
				                					                																			                												                								630090, Koltsovo Science City, Russia						
G. Kim
Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: shevchenko@ihim.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
Bibliografia
- Зленко М.А. Аддитивные технологии в машиностроении. Пособие для инженеров. М.: ГНЦ РФ ФГУП “НАМИ”. 2015. 220 с.
 - Осокин Е.Н. Процессы порошковой металлургии. Версия 1.0 [Электронный ресурс]: курс лекций / Е.Н. Осокин, О.А. Артемьева. – Электрон. дан. Красноярск: ИПК СФУ. 2008. 421 с.
 - Гопиенко В.Г. Металлические порошки алюминия, магния, титана и кремния. Потребительские свойства и области применения. СПб.: Изд-во Политехн. ун-та. / Под ред. А.И. Рудского. 2012. 356 с.
 - Вол А.Е. Строение и свойства двойных металлических систем. М.: Физматгиз. Наука. 1959. 3306 с.
 - Omran A.M. // Al-Azhar University Eng. J. Jaues. 2007. V. 2. № 6. P. 36.
 - Stolecki B., Borodziuk-Kulpa A., Zahorowski W. // J. of Materials Science. 1987. V. 22. № 8. P. 2933.
 - Woo K.D., Lee H.B. // Met. Mater. Int. 2010. V. 16. № 2. P. 213.
 - Omran A.M. // E3 J. of Scientific Research. 2014. V. 2. № 2. P. 026.
 - Okamoto H. // J. of Phase Equilibria and Diffusion. 2012. V. 33. № 6. P. 491.
 - Simchi A. // Metall Mater Trans B, 2004. 35B. P. 937.
 - Louvis E., Fox P., Sutcliffe C.J. // J. Mater Process Technol. 2011. V. 211. P. 275-84.
 - Dadbakhsh S., Hao L. // J. Alloy Comp. 2012. V. 541. P. 328.
 - Piminov P.A., Baranov G.N., Bogomyagkov A.V. et al. // Physics Procedia. 2016. V. 84. P. 19.
 - Aulchenko V.M., Evdokov O.V., Kutovenko V.D. et al. // Nuclear Instruments Methods Physics Research A. 2009. V. 603. P. 76.
 - Gates-Rector S., Blanton T. // Powder diffraction. 2019. V. 34. № 4. P. 1.
 - Rietveld H.A. // J. Appl. Crystallogr. 1969. V. 2. P. 65.
 - Popa N.C., Balzar D. // J. of Applied Crystallography. 2002. V. 35. P. 338-46.
 - Safarik D.J., Klimczuk T., Llobet A. et al. // Phys. Rev. B. 2012. V. 85. № 1. P. 1.
 - Maas J., Bastin G., Van Loo F., Metselaar R. // Intern. J. of Materials Research. 1983. V. 74. № 5. P. 294.
 - Шевченко В.Г., Еселевич Д.А., Попов Н.А., Красильников В.Н. и др. // Физика горения и взрыва. 2018. Т. 54. № 1. С. 65.
 - Шевченко В.Г., Кононенко В.И. Физикохимия активации дисперсных систем на основе алюминия. Екатеринбург: УрО РАН, 2006. 238 с.
 - Акашев Л.А., Попов Н.А., Шевченко В.Г., Ананьев А.И. // Изв. вузов. Порошковая металлургия и функциональные материалы. 2019. № 2. С. 23.
 - Olakanmi E.O., Cohrane R.F., Dalgarno K.W. // Progress in Materials Science, 2015. V. 74. P. 401.
 
Arquivos suplementares
				
			
						
						
					
						
						
									










