Express Search and Characterization of Nitro Compounds via Visualization Mass Spectrometry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The authors describe a way of detecting nitro and amino compounds using a mass spectrometer with laser desorption/ionization. This allows analysis of nitro- and amino compounds from a metal surface without sample preparation at levels of up to 5 ng/cm2 relative to paracetamol. Sensitivity is at the level of modern means of analysis, and the procedure is simple and fast. It is also universal and can be modified to search for other nitro- and amino compounds. Pointwise quantitative analysis can be done using an external standard. The dynamic range is 1.5–2 orders of magnitude. The technique can be used to analyze metal surfaces for nitro-paint residues and traces of explosive compounds.

作者简介

I. Pytskii

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: suhorukov1010@mail.ru
119071, Moscow, Russia

E. Kuznetsova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: ivanpic4586@gmail.com
119991, Moscow, Russia

A. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: suhorukov1010@mail.ru
119071, Moscow, Russia

参考

  1. Caulkins J.P., Gould A., Pardo B. et al. // Annu. Rev. Criminol. 2021. V. 4. P. 353–375.
  2. Galante N., Franceschetti L., Del Sordo S. // Forensic Sci. Med. Pathol. 2021. V. 17. № 3. P. 437–448.
  3. Lehmann E.L., Arruda M.A.Z. // Anal. Chim. Acta. 2019. V. 1063. P. 9–17.
  4. Cunha R.L., Oliveira C.D.S.L., de Oliveira A.L. et al. // Microchem. J. 2021. V. 163. P. 105895.
  5. Suppajariyawat P., Gonzalez-Rodriguez J. // Sci. Justice. 2021. V. 61. № 6. P. 697–703.
  6. Ryan D.J., Spraggins J.M., Caprioli R.M. et al. // Curr. Opin. Chem. Biol. 2019. V. 48. P. 64–72.
  7. Morisasa M., Sato T., Kimura K. et al. // Foods. 2019. V. 8. № 12. P. 633.
  8. Spraggins J.M., Djambazova K.V., Rivera E.S. et al. // Anal. Chem. 2019. V. 91. № 22. P. 14552–14560.
  9. Lee P.Y., Yeoh Y., Omar N. et al. // Crit. Rev. Clin. Lab. Sci. 2021. V. 58. № 7. P. 513–529.
  10. Basu S.S., Regan M.S., Randall E.C. et al. // NPJ Precis. Oncol. 2019. V. 3 № 1. P. 17.
  11. Iartsev S.D., Matyushin D.D., Pytskii I.S. et al. // Surf. Innov. 2018. V. 6. № 4–5. P. 244–249.
  12. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2022. V. 96. № 5. P. 1070–1076.
  13. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1227–1237.
  14. Hoong Y.B., Pizzi A., Chuah L.A. Harun J. // Int. J. Adhes. Adhes. 2015. V. 63. P. 117–123.
  15. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2319–2324.
  16. Wang X., Liu Y., Wang Q. et al. // Spectrochim. 2021. V. 244. P. 118876.
  17. Wang J., Qiu C., Mu X. et al. // Talanta. 2020. V. 210. P. 120631.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (5KB)
3.

下载 (7KB)
4.

下载 (7KB)
5.

下载 (9KB)
6.

下载 (8KB)
7.

下载 (264KB)
8.

下载 (113KB)

版权所有 © И.С. Пыцкий, Е.С. Кузнецова, А.К. Буряк, 2023