Interaction of SiC with Al2O3−(t + m)ZrO2(Y2O3) Oxide Composition
- 作者: Ivannikov A.Y.1, Mel’nikov M.D.1,2, Kargin Y.F.1, Frolova M.G.1, Lysenkov A.S.1, Perevislov S.N.3, Petrakova N.V.1, Kim K.A.1, Sevost’yanov M.A.1
 - 
							隶属关系: 
							
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
 - Mendeleev Russian University of Chemical Technologies
 - Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
 
 - 期: 卷 68, 编号 8 (2023)
 - 页面: 1111-1118
 - 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
 - URL: https://clinpractice.ru/0044-457X/article/view/665216
 - DOI: https://doi.org/10.31857/S0044457X23600172
 - EDN: https://elibrary.ru/MLBTKF
 - ID: 665216
 
如何引用文章
详细
We employed contact alloying in the range 1000–1860°С to study the reaction specifics between SiC and Al2O3−(t + m)ZrO2(Y2O3) oxide composition. Real-time experiments with photographic recording of the changing size and shape of the Al2O3−(t + m)ZrO2(Y2O3) sample on a SiC ceramic substrate showed that Al2O3−(t + m)ZrO2(Y2O3) compositions react with the silicon carbide substrate in the range 1720–1860°С to melt and penetrate into (impregnate) the substrate. X-ray powder diffraction patterns were measured for samples taken from the contact area of the oxide composition with SiC directly on the substrate and in a chipped-off <1-mm-deep near-surface layer. ZrС, Al2Y4O9, and Al3.21Si0.47 were formed in the contact area via redox reactions involving oxide melt, in addition to 6H-SiC, Si and Al2O3, t-ZrO2 phases, which are the initial components of the substrate and oxide composition, respectively.
关键词
作者简介
A. Ivannikov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
M. Mel’nikov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; Mendeleev Russian University of Chemical Technologies
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia; 125048, Moscow, Russia						
Yu. Kargin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
M. Frolova
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
A. Lysenkov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
S. Perevislov
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								199034, St. Petersburg, Russia						
N. Petrakova
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
K. Kim
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
M. Sevost’yanov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: frolovamarianna@bk.ru
				                					                																			                												                								119334, Moscow, Russia						
参考
- Шевченко В.Я., Баринов С.М. Техническая керамика. M.: Наука, 1993. 187 с.
 - Андрианов Н.Т. и др. Химическая технология керамики: учеб. пособие для вузов / Под ред. Гузмана И.Я. М.: ООО Риф “Стройматериалы”, 2012. 496 с.
 - Schwetz K.A. // Handbook of Ceramic Hard Materials. 2000. P. 683.
 - Фролова М.Г., Лысенков А.С., Титов Д.Д. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1086. https://doi.org/10.1134/S0036023621080052
 - Saddow S.E. Advances in Silicon Carbide. Processing and Applications. London: Artech House Inc., 2004. 435 p.
 - Katoh Y., Snead L.L., Szlufarska I. et al. // Curr. Opin. Solid State Mater. Sci. 2012. V. 16. P. 143. https://doi.org/10.1016/j.cossms.2012.03.005
 - Christin F. // Adv. Eng. Mater. 2002. V. 4. P. 903. https://doi.org/10.1002/adem.200290001
 - Ji S., Zhang Z., Wang F. // CES Transactions on Electrical Machines and Systems. 2017. V. 1. P. 254. https://doi.org/10.23919/TEMS.2017.8086104
 - Casady J.B., Johnson R.W. // Solid-State Electron. 1996. V. 39. P. 1409. https://doi.org/10.1016/0038-1101(96)00045-7
 - Neher R., Herrmann M., Brandt K. et al. // J. Eur. Ceram. Soc. 2011. V. 31. P. 175. https://doi.org/10.1016/j.jeurceramsoc.2010.09.002
 - Zhitnyuk S.V., Golovchenko I.A., Makarov N.A. et al. // Glass Ceram. 2013. V. 70. P. 247. https://doi.org/10.1007/s10717-013-9554-1
 - Abilev M., Zhilkashinova A., Pavlov A. et al. // Silicon. 2023. https://doi.org/10.1007/s12633-023-02318-5
 - Кхин Маунг Сое. Композиционная керамика на основе карбида кремния с эвтектическими добавками в системах Al2O3–TiO2–MnO, Al2O3–MnO–SiO2, MgO–SiO2, Al2O3(MgO)–MgO–SiO2. Дис. … канд. техн. наук. М., 2019. 110 с.
 - Житнюк С.В. // Тр. ВИАМ. 2019. № 3. С. 79.
 - Житнюк С.В. Керамика на основе карбида кремния, модифицированная добавками эвтектического состава. Дисс. … канд. тех. наук. РХТУ им. Д.И. Менделеева. М., 2014. 174 с.
 - Фролова М.Г., Каргин Ю.Ф., Лысенков А.С. и др. // Неорган. материалы. 2020. Т. 56. № 9. С. 1039. https://doi.org/10.1134/S0020168520090058
 - Perevislov S.N., Lysenkov A.S., Titov D.D. et al // Glass Ceram. 2019. V. 75. P. 400. https://doi.org/10.1007/s10717-019-00094-6
 - Perevislov S.N., Tomkovich M.V., Lysenkov A.S. // Refract. Ind. Ceram. 2019. V. 59. P. 522. https://doi.org/10.1007/s11148-019-00265-6
 - Перевислов С.Н., Чупов В.Д., Томкович М.В. // Вопросы материаловедения. 2011. № 1. С. 123.
 - Grande T., Sommerset H., Hagen E. et al. // J. Am. Ceram. Soc. 1997. V. 80. P. 1047.
 - Перевислов С.Н. // Перспективные материалы. 2013. № 10. С. 47.
 - Noviyanto A., Yoon D.-H. // Curr. Appl. Phys. 2013. V. 1. P. 287. https://doi.org/10.1016/j.cap.2012.07.027
 - Tomkovich M.V., Perevislov S.N., Panteleev I.B. et al. // Refract. Ind. Ceram. 2020. V. 60. P. 445. https://doi.org/10.17073/1683-4518-2019-9-31-41
 - Фролова М.Г., Леонов А.В., Каргин Ю.Ф. и др. // Материаловедение. 2017. № 12. С. 32.
 - Zawrah M.F., Shaw L. // Ceram. Int. 2004. V. 30. P. 721. doi.org/https://doi.org/10.1016/j.ceramint.2003.07.017
 - Fei Y., Song X., Du L. et al. // Ceram. Int., Part A. 2022. V. 19. P. 27324. https://doi.org/10.1016/j.ceramint.2022.04.326
 - Baud S., Thévenot F., Pisch A. et al. // J. Eur. Ceram. Soc. 2003. V. 23. P. 1. https://doi.org/10.1016/S0955-2219(02)00067-5
 - Baud S., Thévenot F., Chatillon C. // J. Eur. Ceram. Soc. 2003. V. 23. P. 9. https://doi.org/10.1016/S0955-2219(02)00068-7
 - Baud S., Thévenot F., Chatillon C. // J. Eur. Ceram. Soc. 2003. V. 23. P. 19. https://doi.org/10.1016/S0955-2219(02)00069-9
 - Baud S., Thévenot F., Chatillon C. // J. Eur. Ceram. Soc. 2003. V. 23. P. 29. https://doi.org/10.1016/S0955-2219(02)00070-5
 - Ihle J., Herrmann M., Adler J. // J. Eur. Ceram. Soc. 2005. V. 25. P. 987. https://doi.org/10.1016/j.jeurceramsoc.2004.04.015
 - Ihle J., Herrmann M., Adler J. // J. Eur. Ceram. Soc. 2005. V. 25. P. 1005. https://doi.org/10.1016/j.jeurceramsoc.2004.04.017
 - Grande T., Sommerset H., Hagen E. et al. // J. Am. Ceram. Soc. 1997. V. 80. № 4. P. 1047.
 - Baud S., Thévenot F., Pisch A. et al. // J. Eur. Ceram. Soc. 2003. V. 23. P. 1. https://doi.org/10.1016/S0955-2219(02)00067-5
 - Gadalla A., Almasry M., Kongkachuichay P. // J. Mater. Res. 1992. V. 7. P. 2585.
 - Samanta A.K., Dharguupta K.K., Ghatak S. // Ceram. Int. 2001. V. 27. P. 123. https://doi.org/10.1016/S0272-8842(00)00050-X
 - Keppeler M., Reichert H.-G., Broadley J.M. et al. // J. Eur. Ceram. Soc. 1998. V. 18. P. 521. https://doi.org/10.1016/S0955-2219(97)00163-5
 - Can A., Herrmann M., McLachlan D.S. et al. // J. Eur. Ceram. Soc. 2006. V. 26. P. 1707. https://doi.org/10.1016/j.jeurceramsoc.2005.03.253
 - Borrero-López O., Ortiz A.L., Guiberteau F. et al. // J. Eur. Ceram. Soc. 2007. V. 27. P. 3351. https://doi.org/10.1016/j.jeurceramsoc.2007.02.190
 - Gomez E., Echeberria J., Iturriza I. et al. // J. Eur. Ceram. Soc. V. 24. P. 2895. https://doi.org/10.1016/j.jeurceramsoc.2003.09.002
 - Симоненко Е.П., Симоненко Н.П., Нагорнов И.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1274. https://doi.org/10.31857/S0044457X20090202
 - Lyubushkin R.A., Sirota V.V., Ivanov O.N. // Glass Phys. Chem. 2012. V. 38. P. 137. https://doi.org/10.1134/S1087659611060101
 - Ayash S., Alshoufi K., Soukieh M. et al. // J. Fusion Energy. 2016. V. 35. P. 567. https://doi.org/10.1007/s10894-016-0071-4
 - Oelgardt C., Anderson J., Heinrich J.G. et al. // J. Eur. Ceram. Soc. 2010. V. 30. P. 649. https://doi.org/10.1016/j.jeurceramsoc.2009.09.011
 - Dyatlova Ya., Ordanyan S.S., Osmakov A. et al. // Adv. Sci. Technol. 2010. V. 65. P. 11. https://doi.org/10.4028/www.scientific.net/AST.65.11
 - Lakiza S.N., Lopato L.M., Shevchenko A.V. // Powder Metall. Met. Ceram. 1995. V. 33. P. 595.
 
补充文件
				
			
						
						
						
						
					










