Heat Capacity And Thermal Expansion Of LaMgAl11O19

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The heat capacity of LaMgAl11O19 with a magnetoplumbite structure was measured in the temperature range of 7–1865 K using relaxation, adiabatic and differential scanning calorimetries. Obtained temperature dependences of the heat capacity are consistent based on adiabatic calorimetry data. Thermodynamic functions (entropy, enthalpy change, reduced Gibbs energy) in the range 0–1865 K are calculated from fitted values. Thermal expansion in the range of 300-1200 K was studied by high-temperature X-ray diffraction and the coefficient of thermal expansion of LaMgAl11O19 was calculated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Хат алмасуға жауапты Автор.
Email: gagarin@igic.ras.ru
Ресей, Leninsky pr. 31, Moscow, 119991

A. Guskov

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Leninsky pr. 31, Moscow, 119991

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Leninsky pr. 31, Moscow, 119991

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Leninsky pr. 31, Moscow, 119991

K. Gavrcihev

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Leninsky pr. 31, Moscow, 119991

Әдебиет тізімі

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596(89)90048-0
  3. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  4. Bansal N.P., Zhu D. // Surf. Coat. Technol. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  5. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  6. Friedrich C., Gadow R., T. Schirmer T. // J. Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  7. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  8. Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // Philos. Mag. 2009. V. 89. P. 553. https://doi.org/10.1080/14786430802684126
  9. Lee K.N. 4.4.2. Protective coatings for gas turbine // https://www.netl.doe.gov/sites/default/files/gas-turbine-handbook/4-4-2.pdf
  10. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  11. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076.
  12. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  13. Chen X., Zhao Y., Fan X. et al. // Surf. Coat. Technol. 2011. V. 205. P. 3293. https://doi.org/10.1016/j.surfcoat.2010.11.059
  14. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  15. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69(11). P. C-289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  16. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  17. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050
  18. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68(11). С. 1607. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68(11). P. 1599. https://doi.org/10.1134/S0036023623602064
  19. Lu H., Wang C., Zhang C., Tong S. // J. Europ. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  20. Friedrich C., Gadow R., Schirmer T. // Proc. of the 1st Int. Therm. Spray Conf. 2000. P. 1219. https://doi.org/10.31399/asm.cp.itsc2000p1219
  21. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  22. Тюрин А.В., Хорошилов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2018. Т. 63(12). С. 1583. https://doi.org/10.1134/S0044457X18120218
  23. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  24. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  25. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  26. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Supplement
Жүктеу (2MB)
3. Fig. 1. Diffractogram of the LaMgAl11O19 sample.

Жүктеу (204KB)
4. Fig. 2. Morphology of the LaMgAl11O19 surface after annealing at 1973 K.

Жүктеу (301KB)
5. Fig. 3. Consistent dependences of the LaMgAl11O19 heat capacity determined by relaxation (O), adiabatic (o) and differential scanning calorimetry (O) methods.

Жүктеу (141KB)
6. Fig. 4. Change in the parameters of the unit cell (a, c, V) LaMgAl11O19 in the range 298-1173 K.

Жүктеу (137KB)

© Russian Academy of Sciences, 2024