Zinc perfluorocyclohexanoate (C6F11COO)2Zn: synthesis, vapor formation and evaluation of thermodynamic characteristics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The heterophase reaction of interaction of silver perfluorocyclohexanoate with zinc was studied by TG, DSC and mass spectrometry. It was found that as a result of interaction in the temperature range of 320–520 K, solid zinc perfluorocyclohexanoate is formed and an intramolecular reaction of zinc fluoride formation occurs. The obtained experimental data allowed us to calculate the standard enthalpies of formation of the solid zinc complex ΔfН°298.15 = –5693 ± 29 kJ/mol, sublimation and formation of dimeric molecules Zn2(C6F11COO)4 ΔsН°Т = = 190±15 kJ/mol, ΔfН°Т = –11196 ± 40 kJ/mol.

Texto integral

Acesso é fechado

Sobre autores

I. Malkerova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow, 119991

D. Kayumova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow, 119991

D. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow, 119991

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow, 119991

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow, 119991

A. Alikhanyan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: alikhan@igic.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Ingram B.J., Gonzalez G.B., Kammler D.R. // J. Electroceram. 2004. V. 13. P. 167. https://doi.org/10.1007/s10832-004-5094-y
  2. Klein A., Körber C., Wachau A. et al. // J. Mater. 2010. V. 3. № 11. P. 4892. https://doi.org/10.3390/ma3114892
  3. Hartnagel H.L., Dawar A.L., Jain A.K. et al. Semiconducting Transparent Thin Films. Institute of Physics Publishing: Bristol, UK. 1995.
  4. Ginley D.S., Bright C. // MRS Bull. 2000. V. 25. P. 15. https://doi.org/10.1557/mrs2000.256
  5. Granqvist C.G. // Sol. Energy Mater. Sol. Cells. 2007. V. 91. P. 1529. https://doi.org/10.1016/j.solmat.2007.04.031
  6. Ellmer K., Klein A., Rech B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Berlin: Springer-Verlag, Germany. 2008. https://doi.org/10.1007/978-3-540-73612-7
  7. Fortunato E., Ginley D., Hosono H. et al. // MRS Bull. 2007. V. 32. P. 242. https://doi.org/10.1557/mrs2007.29
  8. Gu F., Li C., Hu Y., Zhang L. // J. Cryst. Growth. 2007. V. 304. № 2. P. 369. https://doi.org/10.1016/j.jcrysgro.2007.03.040
  9. Wang G., Shen X., Horvat J. et al. // J. Phys. Chem. С. 2009. V. 113. № 11. P. 4357. https://pubs.acs.org/doi/10.1021/jp8106149
  10. Jogade S.M., Sutrave D.S., Gothe S.D. // Int. J. Adv. Res. Phys. Sci. 2015. V. 2. № 10. P. 36.
  11. Vetter S., Haffer S., Wagner T., Tiemann M. // Sens. Actuators, B. 2015. V. 206. P. 133. https://doi.org/10.1016/j.snb.2014.09.025
  12. Jung D., Han M., Lee G.S. // Sens. Actuators, B. 2014. V. 204. P. 596. https://doi.org/10.1016/j.snb.2014.08.020
  13. Wollenstein J., Burgmair M., Plescher G. et al. // Sens. Actuators, B. 2003. V. 93. P. 442. https://doi.org/10.1016/S0925-4005(03)00168-0
  14. Li W., Xu L., Chen J. // Adv. Funct. Mater. 2005. V. 15. P. 851. https://doi.org/10.1002/adfm.200400429
  15. Bhardwaj P., Singh J., Verma V. et al. // Physica B: Cond. Matter. 2025. V. 696. P. 416596. https://doi.org/10.1016/j.physb.2024.416596
  16. Jayaraj M.K. (Ed.). Nanostructured Metal Oxides and Devices. Materials Horizons: From Nature to Nanomaterials. 2020. https://doi.org/10.1007/978-981-15-3314-3
  17. Mishra S., Daniele S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c
  18. Hichou A.E., Bougrine A., Bubendorff J.L. et al. // Semicond. Sci. Technol. 2002. V. 17. № 6. P. 607. https://doi.org/10.1088/0268-1242/17/6/318
  19. Gunasekaran E., Ezhilan M., Mani et al. // Semicond. Sci. Technol. 2018. V. 33. № 9. P. 095005. https://doi.org/10.1088/1361-6641/aad2ab
  20. Antony A., Pramodini S., Kityk I.V. et al. // Physica E. 2017. V. 94. P. 190. https://doi.org/10.1016/j.physe.2017.08.015
  21. Kadi M.W., McKinney D., Mohamed R.M. et al. // Ceram. Int. 2016. V. 42. № 4. P. 4672. https://doi.org/10.1016/j.ceramint.2015.11.052
  22. Paramanik B., Samanta S., Das D. // Opt. Mater. 2022. V. 133. P. 112961. https://doi.org/10.1016/j.optmat.2022.112961
  23. Cosham S.D., Kociok-Köhn G., Johnson A.L. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 26. P. 4362. https://doi.org/10.1002/ejic.201500536
  24. Bekermann D., Rogalla D., Becker H.-W. et al. // Eur. J. Inorg. Chem. 2010. № 9. P. 1366. https://doi.org/10.1002/ejic.200901037
  25. Успехи химии фтора. Т. I-II, перевод с англ. Термохимия органических соединений фтора / Под ред. Сергеева А.П. М.-Л. 1961.
  26. Karasch M. // J. Res. Nat. Bur. Stand. 1929. P. 359.
  27. Good W., Scott D., Waddingtion G. // J. Phys. Chem. 1956. V. 60. P. 1080.
  28. Morozova E.A., Dobrokhotova Zh.V., Alikhanyan A.S. // J. Therm. Anal. Calorim. 2017. V. 130. № 3. P. 2211. https://doi.org/10.1007/s10973-017-6583-y
  29. Kayumova D.B., Malkerova I.P., Yambulatov D.S. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 3. P. 210. https://doi.org/10.1134/S1070328423601310
  30. Малкерова И.П., Каюмова Д.Б., Белова Е.В. и др. // Коорд. химия. 2023. Т. 49. № 11. С. 706. https://doi.org/10.31857/S0132344X22600515 EDN: NGONJB
  31. Gribchenkova N.A., Alikhanyan A.S. // J. Alloys Compd. 2019. V. 778. P. 77. https://doi.org/10.1016/j.jallcom.2018.11.136
  32. Краткая химическая энциклопедия в 5 томах. М.: Советская энциклопедия, 1967. Т. 5.
  33. Термические константы веществ. Справочник в 10 выпусках / Под ред. Глушко В.П. М.: ВИНИТИ, 1973. Т. 6. Ч. 2.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Mass loss (wt%) and heat flux (mW/mg) upon heating Ag(C6F11COO) (DSC measurement in red; mass loss in intermittent blue).

Baixar (26KB)
3. Fig. 2. Mass loss (wt%) and heat flux (mW/mg) upon heating of the [Ag(C6F11COO) + Zn] system (DSC measurement in red; mass loss in dashed blue).

Baixar (43KB)
4. Fig. 3. Dependence of the heat of reaction (1) on the mass of silver perfluorocyclohexanoate.

Baixar (20KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025