Synthesis and Physicochemical Properties of Magnetic Fе3O4 Particles Doped with Gd(III)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Magnetic Fe3O4 nanoparticles were synthesized by alkaline precipitation of aqueous solutions of divalent and trivalent iron salts. Synthesis of Fe3−xGdxO4 nanoparticles (x = 0.05; 0.1) was performed by adding a calculated amount of Gd(NO3)3 6H2O to the initial solution of iron salt mixture. The phase composition and magnetic properties of the synthesized powders were investigated by X-ray phase analysis, Mössbauer spectroscopy on 57Fe isotope and magnetometry at temperatures T = 7, 20 and 300 K. The investigations confirmed the formation of nanoparticles of non-stehiometric Fe3−δO4 magnetite, as well as magnetite doped with Gd3+ ions. The correlation between the average diameter of nanoparticles of the initial Fe3−δO4 powder and doped Fe3−xGdxO4 powder and the salt used in the synthesis, as well as the concentration of Gd (x), respectively, was revealed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Mitskevich

Belarusian State University

Хат алмасуға жауапты Автор.
Email: fcfvvv12@gmail.com
Белоруссия, 4, Nezavisimost Ave., Minsk, 220030

M. Degtyarik

Research Institute for Physical Chemical Problems of the Belarusian State University

Email: fcfvvv12@gmail.com
Белоруссия, 14, Leningradskaya St., Minsk, 220030

A. Kharchеnkо

Research Institute of Nuclear Problems of the Belarusian State University

Email: fcfvvv12@gmail.com
Белоруссия, 11, Bobruyskaya St., Minsk, 220030

М. Bushinsky

Practical Center of the National Academy of Sciences of Belarus for Materials Science

Email: fcfvvv12@gmail.com
Белоруссия, 19, P. Brovka St., Minsk, 220072

J. Fedotova

Research Institute of Nuclear Problems of the Belarusian State University

Email: fcfvvv12@gmail.com
Белоруссия, 11, Bobruyskaya St., Minsk, 220030

Әдебиет тізімі

  1. Yasemian A.R., Almasi Kashi M., Ramazani A. // Mater. Chem. Phys. 2019. V. 230. P. 9. https://doi.org/10.1016/j.matchemphys.2019.03.032
  2. Koli R.R., Phadatare M.R., Sinha B.B. et al. // J. Taiwan Inst. Chem. Eng. 2019. V. 95. P. 357. https://doi.org/10.1016/j.jtice.2018.07.039
  3. Sharma K.S., Ningthoujam R.S., Dubey A.K. et al. // Sci. Rep. 2018. V. 8. № 1. P. 14766. https://doi.org/10.1038/s41598-018-32934-w
  4. Budnyk A.P., Lastovina T.A., Bugaev A.L. et al. // J. Spectr. 2018. P. 1412563. https://doi.org/10.1155/2018/1412563
  5. Araújo R., Castro A.C.M., Fiúza A. // Mater. Today Proc. 2015. V. 2. P. 315. https://doi.org/10.1016/j.matpr.2015.04.055
  6. Jiang B., Lian L., Xing Y. et al. // Environ. Sci. Pollut. Res. 2018. V. 25. P. 30863. https://doi.org/10.1007/s11356-018-3095-7
  7. Bagbi Y., Sarswat A., Mohan D. et al. // Sci. Rep. 2017. V. 7. №1. P. 7672. https://doi.org/10.1038/s41598-017-03380-x
  8. Li H.Q., Liu F., Zhang B.J. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1681. https://doi.org/10.1134/S0036023623601216
  9. Mojtahedi M.M., Abaee M.S., Rajabi A. et al. // J. Mol. Catal. Chem. 2012. V. 361. P. 68. https://doi.org/10.1016/j.molcata.2012.05.004
  10. Zhang H., Malik V., Mallapragada S. et al. // J. Magn. Magn. Mater. 2017. V. 423. P. 386. https://doi.org/10.1016/j.jmmm.2016.10.005
  11. Jesus A.C.B., Silva T.R., Almeida R.V. et al. // Ceram. Int. 2020. V. 46. № 8. P. 11149. https://doi.org/10.1016/j.ceramint.2020.01.135
  12. Xu R., Zhang J., Liu Y. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 33. P. 36917. https://pubs.acs.org/doi/10.1021/acsami.0c09952
  13. Zhang G., Zhang L., Si Y. et al. // Chem. Eng. J. 2020. V. 388. P. 124269. https://doi.org/10.1016/j.cej.2020.124269
  14. Li J., Li X., Gong S. et al. // Nano Lett. 2020. V. 20. № 7. P. 4842. https://doi.org/10.1021/acs.nanolett.0c00817
  15. Peng H., Cui B., Wang Y. // Mater. Res. Bull. 2013. V. 48. № 5. P. 1767. https://doi.org/10.1016/j.materresbull.2013.01.001
  16. Kahil H., Faramawy A., El-Sayed H. et al. // Crystals. 2021. V. 11. № 10. P. 1153. https://doi.org/10.3390/cryst11101153
  17. Palihawadana-Arachchige M., Naik V.M., Vaishnava P.P. et al. / Nanostructured Materials – Fabrication to Applications. BoD: Books on Demand (2017). https://doi.org/10.5772/intechopen.68219
  18. Jain R., Luthra V., Arora M. et al. // Adv. Sci. Eng. Med. 2019. V. 11. № 1–2. P. 88. https://doi.org/10.1166/asem.2019.2313
  19. Dhillon G., Kumar P., Sharma R. et al. // J. Mater. Sci. Mater. Electron. 2021. V. 32. № 17. P. 22387. https://doi.org/10.1007/s10854-021-06725-5
  20. Janani V., Induja S., Jaison D. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31399. https://doi.org/10.1016/j.ceramint.2021.08.015
  21. Massart R. // IEEE Trans. Magn. 1981. V. 17. № 2. P. 1247. https://doi.org/10.1109/TMAG.1981.1061188
  22. Zhu N., Ji H., Yu P. et al. // Nanomaterials. 2018. V. 8. № 10. P. 810. https://doi.org/10.3390/nano8100810
  23. Lagarec K., Rancourt D.G. // Recoil-Mössbauer spectral analysis software for Windows. University of Ottawa, Ottawa, ON 43 (1998).
  24. Rancourt D.G., Ping J.Y. // Nucl. Instrum. Methods Phys. Res., Sect. B. 1991. V. 58. № 1. P. 85. https://doi.org/10.1016/0168-583X(91)95681-3
  25. Powder Diffraction File (PDF). The International Centre for Diffraction Data.
  26. Williamson G.K., Hall W.H. // Acta Metall. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
  27. Johnson C.E., Johnson J.A., Hah H.Y. et al. // Hyperfine Interact. 2016. V. 237. P. 1. https://doi.org/10.1007/s10751-016-1277-6
  28. Kuchma E., Kubrin S., Soldatov A. // Biomedicines. 2018. V. 6. № 3. P. 78. https://doi.org/10.3390/biomedicines6030078
  29. Winsett J., Moilanen A., Paudel K. et al. // SN Appl. Sci. 2019. V. 1. Р. 1. https://doi.org/10.1007/s42452-019-1699-2
  30. Панкратов Д.А., Анучина М.М., Спиридонов Ф.М. и др. // Кристаллография. 2020. Т. 65. № 3. С. 393. https://doi.org/10.31857/S0023476120030248. Pankratov D.A., Anuchina M.M., Spiridonov F.M. et al. // Crystallogr. Rep. 2020. V. 65. № 3. P. 393. https://doi.org/10.1134/s1063774520030244
  31. Martinez-Boubeta C., Simeonidis K., Makridis A. et al. // Sci. Rep. 2013. V. 3. Р. 1652. https://doi.org/10.1038/srep01652
  32. Zhu W., Winterstein J., Maimon I. et al. // J. Phys. Chem. C. 2016. V. 120. № 27. P. 14854. https://doi.org/10.1021/acs.jpcc.6b02033
  33. Persson K. // Materials data on fe3o4 (sg: 227) by materials project. United States (2015). https://doi.org/10.17188/1194194

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of Fe3O4 (M1, M2) and Fe3-hGdxO4 samples at x = 0.05 (M3) and 0.10 (M4).

Жүктеу (326KB)
3. Fig. 2. X-ray diffraction patterns (points) of Fe3O4 and Fe3-xGdxO4 samples at x = 0.05 and 0.1 in the angle range 38° < 2θ < 45° with approximation (solid lines); a - M1; b - M2; c - M3; d - M4.

Жүктеу (391KB)
4. Fig. 3. Experimental (circles), approximation (red line) and noise (blue line) diffractograms of sample M1. The inset shows the experimental dependence of cos (θ) β on 4sin (θ) for the Williamson-Hall calculation.

Жүктеу (138KB)
5. Fig. 4. Mössbauer spectra of samples M1-M4.

Жүктеу (824KB)
6. Fig. 5. Magnetisation curves M (B) for all synthesised samples.

Жүктеу (395KB)
7. Fig. 6. Example of M (B) curve approximation (experimental curve at T = 300 K (dots), envelope (red curve) and noise (blue curve)) by formula (4) for sample M1 (a) and enlarged fragment (b).

Жүктеу (162KB)

© Russian Academy of Sciences, 2025