ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ УДАРНО-ВОЛНОВЫХ ПРОЦЕССОВ В МАТЕРИАЛАХ ПОД ВОЗДЕЙСТВИЕМ СВЕРХКОРОТКИХ ЛАЗЕРНЫХ ИМПУЛЬСОВ С ИСПОЛЬЗОВАНИЕМ МОДЕЛИ БАЕРА—НУНЦИАТО
- Авторы: Чупров П.А1, Фортова С.В1, Шепелев В.В1
-
Учреждения:
- Институт автоматизации проектирования РАН
- Выпуск: Том 64, № 9 (2024)
- Страницы: 1749-1759
- Раздел: МАТЕМАТИЧЕСКАЯ ФИЗИКА
- URL: https://clinpractice.ru/0044-4669/article/view/665195
- DOI: https://doi.org/10.31857/S0044466924090159
- EDN: https://elibrary.ru/WIQNKT
- ID: 665195
Цитировать
Аннотация
Представлена математическая модель, основанная на многофазной модели Баера—Нунциато. Эффективность модели продемонстрирована на численном решении ударно-волновых задач в конденсированных средах при наличии явной контактной границы с вакуумом. Рассматриваются результаты численного моделирования задач о взаимодействии фемтосекундного лазерного излучения с мишенью из алюминия. Показано преимущество применения модели Баера—Нунциато по сравнению с однофазной гидродинамической моделью при расчете динамики контактной границы. Простота реализации и возможность легкого введения дополнительных субмоделей, таких как горение, делает этот подход привлекательным для моделирования высокоэнергетических процессов в многофазных средах. Библ. 16. Фиг. 7.
Ключевые слова
Об авторах
П. А Чупров
Институт автоматизации проектирования РАН
Email: petchu@mail.ru
Москва, Россия
С. В Фортова
Институт автоматизации проектирования РАНМосква, Россия
В. В Шепелев
Институт автоматизации проектирования РАНМосква, Россия
Список литературы
- Kaczmarek A., Denis P., Krajewski M., Moscicki T., Malolepszyand Hoffman M. Improved Laser Ablation Method for the Production of Luminescent Carbon Particles in Liquids // Materials. 2021. V. 14. Iss. 9.
- Liao Yiliang, Ye Chang, Cheng G.J. A review: Warm laser shock peening and related laser processing technique // Optics & Laser Tech. 2016. V 78. Iss. 2. P. 15-24.
- Walsh N., Costello J.T., Kelly T.J. Optical diagnostics of laser-produced aluminium plasmas under water // Appl. Phys. B. 2017. V. 123. Iss. 6. P. 179.
- Haiying Song, Liu Shi-Bing, Liu H., Wang Yang, Chen Tao, Dong Xiang-Ming Mechanism for femtosecond laser-induced periodic subwavelength structures on solid surface: surface two-plasmon resonance //
- Petrovic S., Gakovic B., Perusko D., Stratakis E., Radovic I., Cekada M., Fotakis C., Jelenkovic B. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films // J. Appl. Phys. 2013. V. 114. P 233108.
- Inogamov N.A., Zhakhovskii V.V., Ashitkov S.I., Petrov Yu.V., Agranat M.B., Anisimov S.I., Nishihara K., Fortov V.E. Nanospallation induced by an ultrashort laser pulse // J. Exp. Theor. Phys. 2008. V. 107. Iss. 1. P 1-19.
- Иногамов Н.А., Перов Е.А., Жаховский В.В., Шепелев В.В., Петров Ю.В., Фортова С.В. Лазерная ударная волна: пластичность, толщина слоя остаточных деформаций и переход из упругопластического в упругий режим распространения // Письма в ЖЭТФ. 2022. T. 115. № 2. C 80-88.
- Xu J., Xue D., Gaidai O., Wang Y., Shaolin Xu Molecular dynamics simulation of femtosecond laser ablation of Cu50Zr50 metallic glass based on two-temperature model // Processes. 2023. V. 11. Iss. 6.
- Bauerhenne B., Zijlstra E.S., Garcia M.E. Molecular dynamics simulations ofa femtosecond-laser-induced solid-tosolid transition in antimony // Appl. Phys. A. 2017. V. 123. Iss. 9. P 608.
- Shepelev V.V., Petrov Yu.V., Inogamov N.A., Zhakhovskii V.V., Perov E.A., Fortova S.V. Attenuation and inflection of initially planar shock wave generated by femtosecond laser pulse // Opt. Las. Tech. 2022. V. 152. P 108100.
- Baer M.R., Nunziato J.W. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials // Int. J. Multiphase Flow. 1986. V. 12. Iss. 6. P. 861-889.
- Saurel R., Favrie N., Petitpas F., Lallemand M.-H., Gavrilyuk S.L. Modelling dynamic and irreversible powder compaction // J. Fl. Mech. 2010. V. 664. P 348-396.
- Chuprov P., Poroshyna Ya., Utkin P. Numerical simulation of the propagation of a shock wave above the dense layer of particles using the Baer-Nunziato system of equations. // Comb. and Expl. 2022. V. 15. Iss. 2. P. 67-74.
- Tokareva S.A., Toro E.F. HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow // J. Comp. Phys. 2010. V. 229. Iss. 10. P. 3573-3604.
- Li Q. Difference scheme for two-phase flow // Appl. Math. Mech. 2004. V. 25. P 536-545.
- Liang Shan, Liu Wei, Yuan Li Solving seven-equation model for compressible two-phase flow using multiple GPUs // Comp. Fluids. 2014. V. 99. P 156-171.
Дополнительные файлы
