A POSTERIORI ERROR ESTIMATES FOR APPROXIMATE SOLUTIONS OF ELLIPTIC BOUNDARY VALUE PROBLEMS IN TERMS OF LOCAL NORMS AND OBJECTIVE FUNCTIONALS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Functional relations have been obtained that allow us to evaluate the accuracy of approximate solutions in terms of measures significantly different from the energy norms that are usually used for these purposes. In particular, they are applicable to local norms and measures constructed using specially built linear functionals. The need for such precision control tools arises if there is a special interest in the behavior of the solution in some subdomain or in the special properties of the solution. It is shown that a posteriori functional-type estimates, which were previously used for global estimates, can be adapted to solve this problem. Functional identities and estimates are obtained that allow estimating the error of any conformal approximations in terms of a wide class of measures, including local norms and problem-oriented functionals. The theoretical results are verified in a series of examples that confirm the effectiveness of the proposed method.

作者简介

A. Muzalevsky

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

S. Repin

St. Petersburg Department of the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences

Email: repin@pdmi.ras.ru
St. Petersburg, Russia; St. Petersburg, Russia; Peter the Great St. Petersburg Polytechnic University

M. Frolov

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

参考

  1. Bangerth W., Rannacher R. Adaptive finite element methods for differential equations. Berlin: Birkhauser, 2003.
  2. Johnson C., Hansbo P. Adaptive finite elements in computational mechanics // Comput. Methods Appl. Mech. Engrg. 1992. V. 101. P. 143–181.
  3. Johnson C., Szepessy A. Adaptive finite element methods for conservation laws based on a posteriori error estimates // Commun. Pure and Appl. Math. 1995. V. XLVIII. P. 199–234.
  4. Mommer M.S., Stevenson R. A goal-oriented adaptive finite element method with convergence rates // SIAM J. Numer. Anal. 2009. V. 47. № 2. P. 861—886.
  5. Stein E., Ruter M., Ohnimus S. Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity // Comput. Meth. Appl. Mech. Engrg. 2007. V. 196. № 37—40. P. 3598—3613.
  6. Repin S. I. A posteriori error estimation for variational problems with uniformly convex functionals // Math. Comput. 2000. V. 69. № 230. P. 481–500.
  7. Repin S. A posteriori estimates for partial differential equations. Berlin: Walter de Gruyter GmbH & Co. KG, 2008.
  8. Репин С.И. Тождество для отклонений от точного решения задачи A u + ` = 0 и его следствия // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 12. С. 22–45.
  9. Repin S., Sauter S. Accuracy of Mathematical Models. Dimension Reduction, Simplification, and Homogenization. EMS Tracts in Mathematics. Vol. 33. 2020.
  10. Репин С.И. Оценки отклонения от точных решений краевых задач в мерах более сильных, чем энергетическая норма // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 5. С. 767–783
  11. Repin S.I. A posteriori estimates in local norms // J.Math. Sci. 2004. V. 124 № 3. P. 5026–5035.
  12. Prager W., Synge J.L. Approximations in elasticity based on the concept of functions space // Quart. Appl. Math. 1947. V. 5. P. 241–269.
  13. Mikhlin S.G. Variational Methods in Mathematical Physics. Oxford: Pergamon Press, 1964.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024