Peculiarities of EEG activity parameters during implicit learning of artificial grammar rules

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied changes in the bioelectrical activity of the brain during implicit learning. The study showed that implicit learning is associated with an increase in amplitude in the α1-, α2- and θ-frequency ranges, mainly in the frontotemporal areas of the cortex. In the higher frequency β range, there is also an increase in amplitude, most significantly in the parieto-occipital and partially frontal areas of the cortex. The observed changes suggest that implicit learning is based on the interaction of two relatively independent neural networks in the brain. The frontotemporal cortex and α1- and θ-frequency oscillatory systems are responsible for processing information and identifying relevant sequences. Whereas the parieto-occipital regions and the oscillatory systems of β2- and α3-rhythms are likely to provide processes for anticipating and preparing a response to relevant sequences and ignoring irrelevant ones.

Full Text

Restricted Access

About the authors

V. A. Batalova

Sirius University of Science and Technology

Email: ksp55@yandex.ru
Russian Federation, Sochi

V. V. Petrov

Sirius University of Science and Technology

Email: ksp55@yandex.ru
Russian Federation, Sochi

S. R. Abramova

Udmurt State University

Email: ksp55@yandex.ru
Russian Federation, Izhevsk

S. P. Kozhevnikov

Udmurt State University

Author for correspondence.
Email: ksp55@yandex.ru
Russian Federation, Izhevsk

References

  1. Агафонов А.Ю., Крюкова А.П, Бурмистров С.Н. Имплицитное научение искусственным грамматикам: установка vs обратная связь. Известия Самарского научного центра Российской академии наук. 2015. 17(1–3): 620–625.
  2. Крюкова А.П., Агафонов А.Ю., Бурмистров С.Н. Эффект переноса при селективном воспроизведении имплицитной последовательности. Российский психологический журнал. 2022. 19(1): 89–100.
  3. Русалова М.Н. Функциональная асимметрия мозга и эмоции. Успехи физиологических наук. 2003. 34(4): 93–112.
  4. Долецкий А.Н., Докучаев Д.А., Лата А.А. Трансформация взглядов на механизм генерации и физиологическую интерпретацию альфа-ритма ЭЭГ. Волгоградский научно-медицинский журнал. 2019. 1: 14–19.
  5. Храмов А.Е, Максименко В.А., Фролов Н.С., Курин С.А., Грубов В.В., Бадарин А.А., Андреев А. В., Казанцев В.Б., С. Ю. Гордлеева, Е.Н. Пицик, А.Н. Писарчик. Мониторинг состояния головного мозга человека в задачах принятия решений при восприятии стимулов. Известия высших учебных заведений. Прикладная нелинейная динамика. 2021. 29(4):603–634.
  6. Altamura M., Carver F., Elvevåg B., Weinberger D., Coppola R. Dynamic cortical involvement in implicit anticipation during statistical learning. Neuroscience Letters. 2014. V.558: 73–77.
  7. Arrighi P., Bonfiglio L., Minichilli F., Cantore N., Carboncini M., Piccotti E., Rossi B., Andre P. EEG theta dynamics within frontal and parietal cortices for error processing during reaching movements in a prism adaptation study altering visuo-motor predictive planning. Journal PLOS ONE. 2016. 11(3): e0150265.
  8. Baeuchl C., Hoppstädter M., Meyer P., Flor H. Contingency awareness as a prerequisite for differential contextual fear conditioning. Cognit. Affect. Behav. Neurosci. 2019. 19(4): 811–828.
  9. Batterink L., Paller K. & Reber P. Understanding the neural basis of implicit and statistical learning. Topics in Cognitive Science. 2019. V.11: 482–503.
  10. Bianco V., Finisguerra A., Ugesi C. Updating implicit contextual priors with explicit learning for the prediction of social and physical events. Brain and Cognition. 2022. V.160: 105876.
  11. Chiu M-J, Hua M-S, Chen T-F, Hwu H-G, Kao C-H, Chen C-H. Brain responses of explicit and implicit memory: an event-related potential study. Neuroreport. 2006. V.17: 1483–1486.
  12. Dou W., A., J. Pre-stimulus alpha-band phase gates early visual cortex responses. . 2022. : 119060.
  13. Goujon A., Didierjean A., Poulet S. The emergence of explicit knowledge from implicit learning. Mem Cognit. 2014. 42(2): 225–36.
  14. Giller F., Bensmann W., Mückschel M., Stock A., Beste C. Evidence for a causal role of superior frontal cortex theta oscillations during the processing of joint subliminal and conscious conflicts. Cortex. 2020. V.132: 15–28.
  15. González-García C., Biyu J He. A gradient of sharpening effects by perceptual prior across the human cortical hierarchy. J Neurosci. 2021. 41(1):167–178.
  16. Heideman, S.G., van Ede F. & Nobre A.C. Temporal alignment of anticipatory motor cortical beta lateralization in hidden visual‐motor sequences. European Journal of Neuroscience. 2018. 48(8), 2684–2695.
  17. Karakaş S. A review of theta oscillation and its functional correlates. International Journal of Psychophysiology. 2020. V.157: 82–99.
  18. Kayser C., Ince R.A.A., Panzeri S. Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. PLOS Computational Biology. 2012. 8(10): e1002717.
  19. Lee C.S., Aly M., Baldassano C. Anticipation of temporally structured events in the brain. eLife 2021. 10: e64972.
  20. Lum J.A.G., Lammertink I., Clark G.M., Fuelscher I., Hyde C., Enticott P.G. & Ullman M.T. Visuospatial sequence learning on the serial reaction time task modulates the P1 event‐related potential. Psychophysiology. 2019. 56(2): e13292.
  21. Lum J.A.G., Clark G.M., Barhoun P., Hill A.T., Hyde C., Wilson P.H. Neural basis of implicit motor sequence learning: Modulation of cortical power. Psychophysiology. 2023. 60(2): e14179.
  22. Meissner S.N., Krause V., Südmeyer, M., Hartmann, C.J. & Pollok B. The significance of brain oscillations in motor sequence learning: Insights from Parkinson’s disease. NeuroImage: Clinical. 2018. V.20: 448–457.
  23. Meissner S.N., Krause V., Südmeyer M., Hartmann C.J. & Pollok B. Pre‐stimulus beta power modulation during motor sequence learning is reduced in Parkinson’s disease. NeuroImage: Clinical. 2019. V. 24: 102057.
  24. Mutha P., Sainburg R., Haaland K. Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain. 2011. V.134: 3647–3661.
  25. Pollok B., Latz D., Krause V., Butz M. & Schnitzler A. Changes of motor‐cortical oscillations associated with motor learning. Neuroscience. 2014. V. 275: 47–53.
  26. Reber A. Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior. 1967. V.77: 317–327.
  27. Rieckmann A., Fischer H., & Backman L. Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: Relations to performance. Neuro Image. 2010. V.50: 1303–1312.
  28. Schiff R., Ashkenazi P., Kahta S., Sasson A. Stimulus variation-based training enhances artificial grammar learning. Acta Psychologica. 2021. V. 214: 103252.
  29. Seidler R.D., Purushotham A., Kim S-G, Ugurbil K., Willingham D., Ashe J. Neural correlates of encoding and expression in implicit sequence learning. Experimental Brain Research. 2005. V.165:114–124.
  30. Silva S., Folia V., Inácio F., Castro S., Petersson K. Modality effects in implicit artificial grammar learning: An EEG study. Brain Research. 2018. V.1687: 50–59.
  31. Sznabel D., Land R., Kopp B. & Kral A. The relation between implicit statistical learning and proactivity as revealed by EEG Sci Rep. 2023. 13(1):15787.
  32. Spitzer B., Haegens S. Beyond the status quo: A role for beta oscillations in endogenous content (re)activation. eNeuro. 2017. 4(4):0170–17.
  33. Tzvi E., Verleger R., Münte T.F. & Krämer U.M. Reduced alpha‐gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning. NeuroImage. 2016. V.141: 60–70.
  34. Turk-Browne N., Scholl B., Chun M. & Johnson M. Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience. 2009. V.21: 1934–1945.
  35. van der Cruijsen J., Manoochehri M., Jonker Z.D., Andrinopoulou E.‐R., Frens M.A., Ribbers G.M., Schouten A.C. & Selles R.W. Theta but not beta power is positively associated with better explicit motor task learning. NeuroImage. 2021. V.240: 118373.
  36. von Stein A., Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology. 2000. 38(3): 301–313.
  37. Wu J., Zhang M., Q., Z., G., C., T. Nonverbal cognitive control training increases the efficiency of frontal-subcortical collaboration for bilingual language control. Neuropsychologia. 2022. 169(3): 108204.
  38. Wróbel A. Attentional activation in cortico-thalamic loops of the visual system. In: Werner, J.S., Chalupa, L.M. (Eds.). New Visual Neurosciences. 2022 MIT Press: 339–350 pp.
  39. Yang Lu, Xiuyan Guo, Xue Weng, Haoran Jiang, Huidan Yan, Xianting Shen, Zhengning Feng, Xinyue Zhao, Lin Li, Li Zheng, Zhiyuan Liu, Weiwei Men, Jia-Hong Gao. Theta signal transfer from parietal to prefrontal cortex ignites conscious awareness of implicit knowledge during sequence learning. J Neurosci. 2023. 43(40):6760–6778.
  40. Zhao C., Guo J., Li D., Tao Y., Ding Y., Liu H., Song Y. Anticipatory alpha oscillation predicts attentional selection and hemodynamic response. Hum Brain Mapp. 2019. V.40: 3606–3619.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Forming scheme and examples of implicit letter sequences (Reber, 1967).

Download (102KB)
3. Fig. 2. Results of different types of learning in the studied groups. Notes: * – significant differences from explicit learning.

Download (99KB)
4. Fig. 3. Comparison of the amplitude of the θ-rhythm during the different types of learning. Notes: comparison by factors Group/Region/Hemisphere.

Download (151KB)
5. Fig. 4. Comparison of the amplitude of the α3-rhythm during the different types of learning. Notes: comparison by factors Group/Region.

Download (157KB)
6. Fig. 5. Comparison of the amplitude of the β2-rhythm during the different types of learning. Notes: comparison by factors Group/Region.

Download (150KB)

Copyright (c) 2025 Russian Academy of Sciences