Functional organization of working memory during delayed coping of verbal and visuo-spatial sequences in children aged 10–12 years. Analysis of ERPS in response to imperative signals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The functional organization of working memory (WM) was studied through the analysis of the event-related potentials (ERPs) elicited by the imperative auditory signal during delayed motor reproduction of visuo-spatial (broken lines) and verbal (letter) sequences in children aged 10–12 years (n = 28, 14 girls). We analyzed how the sequence domain (verbal or visuo-spatial), the imperative signal delay (500 ms or 3000 ms) and the mode of sequences presentation (static or dynamic) influenced on the ERP parameters. The magnitude and topography of the ERP positive components (P200 and P300) were found to depend specifically on the domain, the mode of sequences presentation and the time of their retention in WM. In both domains, ERP amplitude increased with the delay of the imperative signal demonstrated additional activation of the anterior and posterior associative cortical areas. Thus, the findings of the present study, along with previous results from adult participants (Kurgansky et al., 2022), indicate the transformation of the neuronal basis of representations of sequentially organized information during its storage in the WM. The age specificity of the functional organization of the WM in children aged 10–12 years expressed in the predominant involvement of the cortical areas of the left hemisphere during retention of both visuo-spatial and verbal sequential information.

Texto integral

Acesso é fechado

Sobre autores

R. Machinskaya

Institute of Сhild Development, Health and Аdaptation; Russian Presidential Academy of National Economy and Public Administration

Email: regina_home@inbox.ru
Rússia, Moscow; Moscow

A. Korneev

Institute of Сhild Development, Health and Аdaptation; Lomonosov Moscow State University

Email: regina_home@inbox.ru
Rússia, Moscow; Moscow

A. Kurgansky

Institute of Сhild Development, Health and Аdaptation; Russian Presidential Academy of National Economy and Public Administration; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: regina_home@inbox.ru
Rússia, Moscow; Moscow; Moscow

D. Lomakin

Institute of Сhild Development, Health and Аdaptation

Autor responsável pela correspondência
Email: regina_home@inbox.ru
Rússia, Moscow

Bibliografia

  1. Бетелева Т.Г., Мачинская Р.И., Курганский А.В., Фарбер Д.А. Мозговая организация рабочей памяти в младшем школьном возрасте. Мозговые механизмы формирования познавательной деятельности в младшем школьном возрасте. Ред. Мачинская Р.И., Фарбер Д.А.. М: НОУ ВПО «МПСУ»; Воронеж: МОДЭК, 2014. C. 237–262.
  2. Величковский Б.М. Когнитивная наука: Основы психологии познания. В 2 тт. Т. 1. М.: Академия, 2006. 448 с.
  3. Клеева Д.Ф., Ребрейкина А.Б., Сысоева О.В. Компоненты вызванного потенциала в исследовании перцептивного научения [Электронный ресурс]. Современная зарубежная психология. 2020. 9 (2): 34–45. doi: 10.17759/jmfp.2020090203
  4. Корнеев А.А., Ломакин Д.И., Курганский А.В., Мачинская Р.И. Отсроченное копирование незнакомых контурных изображений: анализ потенциалов, связанных с предъявлением стимулов. Журнал высшей нервной деятельности им. И. П. Павлова. 2016. 66 (4): 470–483. doi: 10.7868/S0044467716040080
  5. Корнеев А.А., Ломакин Д.И., Курганский А.В., Мачинская Р.И. Удержание вербальной и невербальной серийной информации в рабочей памяти. Психология. Журнал Высшей школы экономики. 2022. 19. (2): 303–322. doi: 10.17323/1813-8918-2022-2-303-322
  6. Корнеев А. А, Курганский А.В. Внутренняя репрезентация серии движений при воспроизведении статического рисунка и траектории движущегося объекта. Журн. высш. нервн. деят. им. И. П. Павлова. 2013. 63 (4): 437–450. doi: 10.7868/S0044467713040060
  7. Корнеев А.А., Курганский А.В. Влияние способа зрительного предъявления сложной траектории на временные параметры ее отсроченного двигательного воспроизведения. Психологические исследования. 2014. 7 (37). https://doi.org/10.54359/ps.v7i37.594
  8. Корнеев А.А., Ломакин Д.И., Курганский А.В., Мачинская Р.И. Запоминание вербальной и невербальной серийной информации детьми 9–11 лет. Национальный психологический журнал. 2024. № 4 (в печати).
  9. Курганский А.В., Ломакин Д.И., Корнеев А.А., Мачинская Р.И. Мозговая организация рабочей памяти при отсроченном копировании ломаной линии: анализ потенциалов, связанных с императивным сигналом. Журн. высш. нервн. деят. им. И.П. Павлова. 2022. 72 (3): 387–404. doi: 10.31857/S0044467722030066
  10. Мачинская Р.И., Курганский А.В., Корнеев А.А., Ломакин Д.И. Мозговая организация рабочей памяти в задачах на удержание вербальных и зрительно-пространственных последовательностей: анализ ССП на императивный сигнал. Сборник тезисов XXIV Съезда физиологического общества им. И.П. Павлова. Санкт-Петербург, 11–15 сентября 2023 г. Ред. Фирсов М.Л. СПб.: Изд-во ВВМ, 2023. С. 522.
  11. Мачинская Р.И., Дубровинская Н.В. Онтогенетические особенности функциональной организации полушарий при направленном внимании: ожидание перцептивной задачи. Журн. высш. нервн. деят. им. И.П. Павлова. 1994. 44 (3): 448–456.
  12. Фарбер Д.А., Бетелева Т.Г. Формирование мозговой организации рабочей памяти в младшем школьном возрасте. Физиология человека. 2011. 37 (1): 5–17.
  13. Absatova K.A., Kurgansky A.V., Machinskaya R.I. The recall modality affects the source-space effective connectivity in the θ-band during the retention of visual information. Psychology and Neuroscience. 2016. 9 (3):344–361. doi: 10.1037/pne0000063
  14. Adam K.C. S., Rademaker R.L., Serences J.T. Dynamics Are the Only Constant in Working Memory. J. Cogn. Neurosci. 2022. 35(1):24–26. doi: 10.1162/jocn_a_01941.
  15. Adams E.J., Nguyen A.T., Cowan N. Theories of Working Memory: Differences in Definition, Degree of Modularity, Role of Attention, and Purpose. Lang Speech Hear Serv. Sch. 2018. 49(3):340–355. doi: 10.1044/2018_LSHSS-17-0114.
  16. Atkinson R.C., Shiffrin R.M. Human Memory: A Proposed System and its Control Processes. The psychology of learning and motivation. 1968. 2: 89–195. https://doi.org/10.1016/S0079-7421(08)60422-3
  17. Berchicci M., Spinelli D., Di Russo F. New insights into old waves. Matching stimulus- and response-locked ERPs on the same time-window. Biol. Psychol. 2016. 117: 202–215. https://doi.org/10.1016/j.biopsycho.2016.04.007
  18. Berti S. Switching Attention Within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential. Frontiers in human neuroscience, 2016. 9. https://doi.org/10.3389/fnhum.2015.00701
  19. Bharti A.K., Yadav S.K., Jaswal S. Feature Binding of Sequentially Presented Stimuli in Visual Working Memory. Front Psychol. 2020. 11:33. doi: 10.3389/fpsyg.2020.00033.
  20. Bludau S., Eickhoff S.B., Mohlberg H., Caspers S., Laird A.R., Fox P.T., Schleicher A., Zilles K., Amunts K. Cytoarchitecture, probability maps and functions of the human frontal pole. NeuroImage. 2014. 93 (Pt 2):260–275. https://doi.org/10.1016/j.neuroimage.2013.05.052
  21. Dehaene S., Meyniel F., Wacongne C., Wang L., Pallier C. The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees. Neuron. 2015. 88 (1): 2–19. doi: 10.1016/j.neuron.2015.09.019.
  22. D’Esposito M., Postle B.R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 2015. 66:115–42. doi: 10.1146/annurev-psych-010814-015031.
  23. Ekert J.O., Gajardo-Vidal A., Lorca-Puls D. L., Hope T.M. H., Dick F., Crinion J.T., Green D.W., Price C.J. Dissociating the functions of three left posterior superior temporal regions that contribute to speech perception and production. NeuroImage. 2021. 245:118764. https://doi.org/10.1016/j.neuroimage.2021.118764
  24. Filimonov D., Railo H., Revonsuo A., Koivisto M. Modality-specific and modality-general electrophysiological correlates of visual and auditory awareness: Evidence from a bimodal ERP experiment. Neuropsychologia. 2022. 166: 108154. https://doi.org/10.1016/j.neuropsychologia.2022.108154
  25. Finnigan S., O’Connell R. G., Cummins T.D., Broughton M., Robertson I.H. ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology. 2011. 48(5): 601–611. https://doi.org/10.1111/j.1469-8986.2010.01128.x
  26. Fulvio J.M., Yu Q., Postle B.R. Strategic control of location and ordinal context in visual working memory. Cereb. Cortex. 2023. 33(13):8821–8834. doi: 10.1093/cercor/bhad164.
  27. Ghani U., Signal N., Niazi I.K., Taylor D. ERP based measures of cognitive workload: A review. Neuroscience & Biobehavioral Reviews. 2020. 118:18–26. doi: 10.1016/j.neubiorev.2020.07.020
  28. Ginsburg V., Archambeau K., van Dijck J.-P., Chetail F., Gevers W. Coding of serial order in verbal, visual and spatial working memory. Journal of Experimental Psychology: General. 2017. 146 (5): 632–650. https://doi.org/10.1037/xge0000278;
  29. Guidali G., Pisoni A., Bolognini N., Papagno C. Keeping order in the brain: The supramarginal gyrus and serial order in short-term memory. Cortex. 2019. 119:89–99. doi: 10.1016/j.cortex.2019.04.009.
  30. Halgren E., Marinkovic K., Chauvel P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 1998. 106 (2): 156–164. https://doi.org/10.1016/s0013-4694(97)00119-3
  31. Hall M.H., Jensen J.E., Du F., Smoller J.W., O’Connor L., Spencer K.M., Öngür D. Frontal P3 event-related potential is related to brain glutamine/glutamate ratio measured in vivo. Neuroimage. 2015. 111:186–191. https://doi.org/10.1016/j.neuroimage.2015.02.014
  32. Haque Z.Z., Samandra R., Mansouri F.A. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J. Neurophysiol. 2021. 125 (6):2038–2053. doi: 10.1152/jn.00041.2021.
  33. Hodgson V.J., Lambon Ralph M.A., Jackson R.L. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cerebral Cortex. 2023.33(8): 4990–5006. https://doi.org/10.1093/cercor/bhac394
  34. Hosseini M., Zivony A., Eimer M., Wyble B., Bowman H. Transient Attention Gates Access Consciousness: Coupling N2pc and P3 Latencies Using Dynamic Time Warping. Journal of Neuroscience. 2024. 44 (26): e1798232024. https://doi.org/10.1523/jneurosci.1798-23.2024
  35. Houdé O., Rossi S., Lubin A., Joliot M. Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Dev. Sci. 2010. 13(6): 876–885. https://doi.org/10.1111/j.1467-7687.2009.00938.x
  36. Huang W.J., Chen W.W., Zhang X. The neurophysiology of P 300 – an integrated review. Eur. Rev. Med. Pharmacol Sci. 2015.19 (8):1480–1488. PMID: 25967724. https://www.europeanreview.org/article/8813
  37. Hurlstone M.J., Hitch G.J. How is the serial order of a visual sequence represented? Insights from transposition latencies. J. Exp. Psychol. Learn. Mem. Cogn. 2018. 44(2):167–192. doi: 10.1037/xlm0000440.
  38. Iamshchinina P., Christophel T.B., Gayet S., Rademaker R.L. Essential considerations for exploring visual working memory storage in the human brain. Visual Cognition. 2021. 29 (7): 425–436. https://doi.org/10.1080/13506285.2021.1915902
  39. Johnson E.L., Chang W.K., Dewar C.D., Sorensen D., Lin J.J., Solbakk A.K., Endestad T., Larsson P.G., Ivanovic J., Meling T.R., Scabini D., Knight R.T. Orbitofrontal cortex governs working memory for temporal order. Curr. Biol. 2022. 32(9): R410–R411. doi: 10.1016/j.cub.2022.03.074.
  40. Lefebvre C.D., Marchand Y., Eskes G.A., Connolly J.F. Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology. 2005. 116 (7):1665–1680. https://doi.org/10.1016/j.clinph.2005.03.015
  41. Li D., Christ S.E., Cowan N. Domain-general and domain-specific functional networks in working memory. Neuroimage. 2014. 102 (Pt 2): 646–656. doi: 10.1016/j.neuroimage.2014.08.028.
  42. Logie R.H. Visuo-Spatial Working Memory. London: Psychology press. 2014. 161 p. https://doi.org/10.4324/9781315804743
  43. Logie R.H., Saito S., Morita A., Varma S., Norris D. Recalling visual serial order for verbal sequences. Mem. Cogn. 2016. 44: 590–607. https://doi.org/10.3758/s13421-015-0580-9
  44. Logie R.H., Belletier C., Doherty J.M. Integrating Theories of Working Memory. Working Memory: The state of the science. Eds. Logie R.H., Camos V., Nelson Cowan N. Oxford: Oxford University Press. 2020. Рp. 389–429. https://doi.org/10.1093/oso/9780198842286.003.0014
  45. Luck S.J. Event-related potentials APA handbook of research methods in psychology. Vol. 1: Foundations, planning, measures, and psychometrics. Washington, DC, US: American Psychological Association. 2012. Рp. 523–546.
  46. Majerus S. Verbal working memory and the phonological buffer: The question of serial order. Cortex. 2019. 112:122–133. https://doi.org/10.1016/j.cortex.2018.04.016
  47. Mammarella I.C., Borella E., Pastore M., Pazzaglia F. The structure of visuospatial memory in adulthood. Learn. Individ. Differ. 2013. 25: 99–110. https://doi.org/10.1016/j.lindif.2013.01.014
  48. Marshuetz C. Order information in working memory: an integrative review of evidence from brain and behavior. Psychological Bulletin. 2005. 131(3): 323–339. https://doi.org/10.1037/0033-2909.131.3.323
  49. Meyers E.M. Dynamic population coding and its relationship to working memory. J. Neurophysiol. 2018. 120(5):2260–2268. doi: 10.1152/jn.00225.2018.
  50. Papitto G., Friederici A.D., Zaccarella E. The topographical organization of motor processing: An ALE meta-analysis on six action domains and the relevance of Broca’s region. NeuroImage. 2020. 206:116321. doi: 10.1016/j.neuroimage.2019.116321
  51. Pickering S.J., Gathercole S.E., Hall M., Lloyd S.A. Development of memory for pattern and path: further evidence for the fractionation of visuo-spatial memory. Q. J. Exp. Psychol. A. 2001. 54(2):397–420. doi: 10.1080/713755973. PMID: 11394054.
  52. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 2007. 118(10): 2128–2148. doi: 10.1016/j.clinph.2007.04.019
  53. Potts G.F., Martin L.E., Burton Ph., Montague P.R. When Things Are Better or Worse than Expected: The Medial Frontal Cortex and the Allocation of Processing Resources. J. Cogn. Neurosci. 2006. 18 (7):1112–1119. doi: 10.1162/jocn.2006.18.7.1112
  54. Purcell J., Rapp B., Martin R.C. Distinct Neural Substrates Support Phonological and Orthographic Working Memory: Implications for Theories of Working Memory. Front Neurol. 2021. 12:681141. doi: 10.3389/fneur.2021.681141.
  55. Robert S., Ungerleider L.G., Vaziri-Pashkam M. Disentangling Object Category Representations Driven by Dynamic and Static Visual Input. J. Neurosci. 2023. 43(4): 621–634. doi: 10.1523/JNEUROSCI.0371-22.2022.
  56. Roberts K.L., Englаnd Strait J.A., Decker S.L. Developmental Trajectories of Verbal, Static Visual-Spatial, and Dynamic Visual-Spatial Working Memory. Contemp. School Psychol. 2018. 22: 458–467. https://doi.org/10.1007/s40688-018-0176-z
  57. Rose N.S. The Dynamic-Processing Model of Working Memory. Current Directions in Psychological Science. 2020. 29 (4): 378–387. https://doi.org/10.1177/0963721420922185
  58. Samson Ch., van der Stigchel S. Dynamic and flexible transformation and reallocation of visual working memory representations.Visual Cognition. 2021. 29 (7): 409–415. doi: 10.1080/13506285.2021.1891168;
  59. Schendan H.E., Kutas M. Neurophysiological Evidence for the Time Course of Activation of Global Shape, Part, and Local Contour Representations during Visual Object Categorization and Memory. J. Cogn. Neurosci. 2007. 19 (5): 734–749. doi: 10.1162/jocn.2007.19.5.734.
  60. Shaw P., Lalonde F., Lepage C., Rabin C., Eckstrand K., Sharp W., Greenstein D., Evans A., Giedd J.N., Rapoport J. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry. 2009. 66 (8); 888–896. https://doi.org/10.1001/archgenpsychiatry.2009.103
  61. Soltani M., Knight R.T. Neural origins of the P300. Critical reviews in neurobiology. 14(3–4):199–224. PMID: 12645958.
  62. Spaak E., Watanabe K., Funahashi S., Stokes M.G. Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex. J. Neurosci. 2017. 37(27):6503–6516. doi: 10.1523/JNEUROSCI.3364-16.2017.
  63. Talalay I.V., Kurgansky A.V., Machinskaya R.I. Alpha-Band Functional Connectivity During Modality-Specific Anticipatory Attention in Children Aged 9–10 Years: Eeg-Source Coherence Analysis. Zh. Vyssh. Nerv. Deiat. 2021. 71 (4): 547–562. doi: 10.31857/S0044467721040110
  64. Tian Y., Beier M.E., Fischer-Baum S. The domain-specificity of serial order working memory. Mem. Cogn. 2022. 50: 941–961. https://doi.org/10.3758/s13421-021-01260-4.
  65. Verleger R. Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology. 2020. 57(7): e13542. https://doi.org/10.1111/psyp.13542
  66. Villacorta-Atienza J. A, Calvo Tapia C., Díez-Hermano S., Sánchez-Jiménez A., Lobov S., Krilova N., Murciano A., López-Tolsa G. E, Pellón R., Makarov V.A. Static internal representation of dynamic situations reveals time compaction in human cognition. J. Adv. Res. 2020. 28:111–125. doi: 10.1016/j.jare.2020.08.008.
  67. Working Memory: The state of the science. Eds. Logie R., Camos V., and Cowan N. Oxford: Oxford Academic, 2020. Online edn. https://doi.org/10.1093/oso/9780198842286.001.0001
  68. Zimmer H.D., Liesefeld H.R. Spatial information in (visual) working memory. Spatial working memory. Eds: Vandierendonck A., Szmalec A. London: Psychology Press. 2011. P. 47–66. https://doi.org/10.4324/9781315793252

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Examples of verbal and non-verbal stimuli (а), modes of their presentation (б) and the sequence of events in one experimental probe (в).

Baixar (179KB)
3. Fig. 2. Superposition of ERP to an imperative signal in 20 pseudo-leads during delayed copying of a broken line and reproducing of the order of letters: I, III – 500 ms delay; II, IV – 3000 ms delay; I, II – static mode; III, IV – dynamic mode

Baixar (302KB)
4. Fig. 3. The task of maintaining and reproducing broken lines. Averaged values of three ERP components of the ERP to an imperative signal (in μV) and their amplitude maps. Error bars reflect two-sided SEM values. For each component I, III – 500 ms delay; II, IV – 3000 ms delay; I, II – static mode; III, IV – dynamic mode. Gray columns – left hemisphere, black columns – right hemisphere. Designations of the pseudoleads: Fp – Fp1/2; F – F3/4: Fi – F7/8; C – C3/4; P – P3/4; Ta – T3/4; Tp – T5/6, O – O1/O2. The color scale characterizes the amplitude of the corresponding component, normalized to the absolute value of the maximum deviation of this component from zero, blue – deviation towards negative values, red – towards positive values.

Baixar (375KB)
5. Fig. 4. The task of retaining and subsequent reproduction of letter sequences. Averaged values of three components of the ERP to an imperative signal (in μV) and their amplitude maps. Error bars reflect two-sided SEM values. For each component I, III – delay 500 ms; II, IV – delay 3000 ms; I, II – static mode; III, IV – dynamic mode. Gray columns – left hemisphere, black columns – right hemisphere. Designations of the pseudoleads and color scale of amplitude maps are the same as in Fig. 3.

Baixar (360KB)
6. Fig. 5. Topography of the significant ERP changes due to the retention time and mode of presentation of the broken lines and the letter sequences. Designations: I, II – the influence of DURATION; III, IV – the influence of MODE; I, III – retention of broken lines; II, IV – retention of letter sequences. Data on statistical significance of ERP differences in individual leads are given in the text of RESULTS section. Circle – P200, triangle – P300. Solid line – ERP value is higher with delay duration of 3000 ms, dotted line – with delay duration of 500 ms.

Baixar (187KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025