The influence of physical activity on the level of chronic inflammation in health and in non-infectious diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this review we discuss the effects of exercise on systemic inflammation. The influence of moderate continuous training on humoral immunity and cellular immunity is separately considered. Recent data on the molecular mechanisms of this influence, such as myokines secreted by skeletal muscles and adipokines secreted by adipocytes, are discussed. Clinical data are provided on the effect of moderate physical activity on common diseases — cardiovascular diseases, diabetes, cancer, Alzheimer’s disease and others.

Full Text

Restricted Access

About the authors

N. V. Pahomov

Cherepovets State University

Email: dkostchsu@yandex.ru
Russian Federation, Cherepovets

D. S. Kostunina

Cherepovets State University

Author for correspondence.
Email: dkostchsu@yandex.ru
Russian Federation, Cherepovets

A. А. Artemenkov

Cherepovets State University

Email: dkostchsu@yandex.ru
Russian Federation, Cherepovets

References

  1. Kim M., Sung J., Jin M. et al. Impact of Physical Activity on All-Cause Mortality According to Specific Cardiovascular Disease // Front. Cardiovasc. Med. 2022. V. 9. P. 811058.
  2. Zhao M., Veeranki S.P., Magnussen C.G., Xi B. Recommended physical activity and all cause and cause specific mortality in US adults : prospective cohort study // BMJ. 2020. V. 370. P. m2031.
  3. Lee D.H., Rezende L.F.M., Joh H. et al. Mortality: A Prospective Cohort of US Adults // Circulation. 2022. V. 146. № 7. P. 523.
  4. Davletiyarova K.V., Kapilevich L.V., Soltanova V.L. et al. Adaptation possibilities of students going to exercise therapy // Bull. Sib. Med. 2011. V. 10. № 3. P. 116.
  5. Bonaccio M., Castelnuovo A.Di, Pounis G. et al. A score of low-grade inflammation and risk of mortality: prospective findings from the Moli-sani study // Haematologica. 2016. V. 101. № 11. P. 1434.
  6. Bo W., Zhou S., Meng J., Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic // Front. Mol. Neurosci. 2021. V. 14. P. 785214.
  7. Rönnbäck C., Hansson E. The Importance and Control of Low-Grade Inflammation Due to Damage of Cellular Barrier Systems That May Lead to Systemic Inflammation // Front. Neurol. 2019. V. 10. P. 533.
  8. Niu Y., Bai N., Ma Y. et al. Safety and efficacy of anti - inflammatory therapy in patients with coronary artery disease: a systematic review and meta-analysis // BMC Cardiovasc. Disord. 2022. V. 22. № 1. P. 84.
  9. Pollack R., Donath M., Leroith D., Leibowitz G. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications // Diabetes Care. 2016. V. 39. P. S244.
  10. Mantovani A., Garlanda C. Humoral Innate Immunity and Acute-Phase Proteins // N. Engl. J. Med. 2023. V. 388. № 5. P. 439.
  11. Peake J.M., Gatta Della P., Suzuki K., Nieman D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects // Exerc. Immunol. Rev. 2015. V. 21. P. 8.
  12. Steensberg A., van Hall G., Osada T. et al. Physical exercise induces the release of a cascade of cytokines // J. Physiol. 2000. V. 529. № 1. P. 237.
  13. Kapilevich L.V., Zakharova A.N., Kabachkova A.V. et al. Changes in the plasma levels of myokines after different physical exercises in athletes and untrained individuals // Human Physiology. V. 43. № 3. P. 312.
  14. Nieman D.C., Henson D.A., Davis J.M. et al. Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA // J. Appl. Physiol. 2007. V. 103. № 5. P. 1728.
  15. Cabral-Santos C., de Lima Junior E.A., Fernan- des I.M. da C. et al. Interleukin-10 responses from acute exercise in healthy subjects: A systematic review // J. Cell. Physiol. 2019. V. 234. № 7. P. 9956.
  16. Hamer M., Sabia S., Batty G.D. et al. Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study // Circulation. 2012. V. 126. № 8. P. 928.
  17. Elhakeem A., Cooper R., Whincup P. et al. Physical activity, sedentary time, and cardiovascular disease biomarkers at age 60 to 64 years // J. Am. Heart Assoc. 2018. V. 7. № 16. P. e007459.
  18. Morettini M., Storm F., Sacchetti M. et al. Effects of walking on low-grade inflammation and their implications for Type 2 Diabetes // Prev. Med. Rep. 2015. V. 2. P. 538.
  19. Hayashino Y., Jackson J.L., Hirata T. et al. Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: A meta-analysis of randomized controlled trials // Metabolism. 2014. V. 63. № 3. P. 431.
  20. March D.S., Lai K.-B., Neal T. et al. Circulating endotoxin and inflammation: associations with fitness, physical activity and the effect of a 6-month programme of cycling exercise during haemodialysis // Nephrol. Dial. Transplant. 2022. V. 37. № 2. P. 366.
  21. Smart N.A., Larsen A.I., Le Maitre J.P., Ferraz A.S. Effect of exercise training on interleukin-6, tumour necrosis factor alpha and functional capacity in heart failure // Cardiol. Res. Pract. 2011. V. 2011. P. 532620.
  22. Schumacher S.M., Naga Prasad S.V. Tumor Necrosis Factor-α in Heart Failure: an Updated Review // Curr. Cardiol. Rep. 2018. V. 20. № 11. P. 117.
  23. Sanchez L.D., Tracy J.A., Berkoff D., Pedrosa I. Ischemic colitis in marathon runners: A case-based review // J. Emerg. Med. 2006. V. 30. № 3. P. 321.
  24. Lamers C.R., de Roos N.M., Koppelman L.J.M. et al. Patient experiences with the role of physical activity in inflammatory bowel disease: results from a survey and interviews // BMC Gastroenterol. 2021. V. 21. № 1. P. 172.
  25. Laveneziana P., Palange P. Physical activity, nutritional status and systemic inflammation in COPD // Eur. Respir. J. 2012. V. 40. № 3. P. 522.
  26. Jenkins A.R., Holden N.S., Jones A.W. Inflammatory responses to acute exercise during pulmonary rehabilitation in patients with COPD // Eur. J. Appl. Physiol. 2020. V. 120. № 10. P. 2301.
  27. Cook M.D., Martin S.A., Williams C. et al. Protective in a Mouse Model of Colitis // Brain Behav. Immun. 2013. V. 33. P. 46.
  28. Legeret C., Mählmann L., Gerber M. et al. Favorable impact of long-term exercise on disease symptoms in pediatric patients with inflammatory bowel disease // BMC Pediatr. 2019. V. 19. № 1. P. 297.
  29. Tijardović M., Marijančević D., Bok D. et al. Intense Physical Exercise Induces an Anti-inflammatory Change in IgG N-Glycosylation Profile // Front. Physiol. 2019. V. 10. P. 1522.
  30. Delgado-Alfonso A., Pérez-Bey A., Conde-Caveda J. et al. Independent and combined associations of physical fitness components with inflammatory biomarkers in children and adolescents // Pediatr. Res. 2018. V. 84. № 5. P. 704.
  31. Ramanjaneya M., Abdalhakam I., Bettahi I. et al. Effect of Moderate Aerobic Exercise on Complement Activation Pathways in Polycystic Ovary Syndrome Women // Front. Endocrinol. (Lausanne). 2022. V. 12. P. 740703.
  32. Holt M.F., Michelsen A.E., Shahini N. et al. The Alternative Complement Pathway Is Activated Without a Corresponding Terminal Pathway Activation in Patients With Heart Failure // Front. Immunol. 2021. V. 12. P. 800978.
  33. Schartz N.D., Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease // J. Neuroinflammation. 2020. V. 17. № 1. P. 354.
  34. Gillum R.F., Mussolino M.E., Madans J.H. Counts of neutrophils, lymphocytes, and monocytes, cause-specific mortality and coronary heart disease: The NHANES-I epidemiologic follow-up study // Ann. Epidemiol. 2005. V. 15. № 4. P. 266.
  35. Park J.M., Lee H.S., Park J.Y. et al. White blood cell count as a predictor of incident type 2 diabetes mellitus among non-obese adults: A longitudinal 10-year analysis of the korean genome and epidemiology study // J. Inflamm. Res. 2021. V. 14. P. 1235.
  36. Gan W.Q., Man S.F.P., Senthilselvan A., Sin D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis // Thorax. 2004. V. 59. № 7. P. 574.
  37. Mack D.R., Saul B., Boyle B. et al. Analysis of Using the Total White Blood Cell Count to Define Severe New-onset Ulcerative Colitis in Children // J. Pediatr. Gastroenterol. Nutr. 2020. V. 71. № 3. P. 354.
  38. Johannsen N.M., Swift D.L., Johnson W.D. et al. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: results from DREW // PLoS One. 2012. V. 7. № 2. P. e31319.
  39. Marruganti C., Baima G., Grandini S. et al. Leisure-time and occupational physical activity demonstrate divergent associations with periodontitis: A population-based study // J. Clin. Periodontol. 2023. V. 50. № 5. P. 559.
  40. Noz M.P., Hartman Y.A.W., Hopman M.T.E. et al. Sixteen-Week Physical Activity Intervention in Subjects With Increased Cardiometabolic Risk Shifts Innate Immune Function Towards a Less Proinflammatory State // J. Am. Heart Assoc. 2019. V. 8. № 21. P. e013764.
  41. de Matos M.A., Garcia B.C.C., Vieira D.V. et al. High-intensity interval training reduces monocyte activation in obese adults // Brain. Behav. Immun. 2019. V. 80. P. 818.
  42. Adamo L., Rocha-Resende C., Mann D.L. The Emerging Role of B Lymphocytes in Cardiovascular Disease // Annu. Rev. Immunol. 2020. V. 38. P. 99.
  43. Giuffrida P., Corazza G.R., Di Sabatino A. Old and New Lymphocyte Players in Inflammatory Bowel Disease // Dig. Dis. Sci. 2018. V. 63. № 2. P. 277.
  44. Steiner R., Pilat N. The potential for Treg-enhancing therapies in transplantation // Clin. Exp. Immunol. 2023. V. 211. № 2. P. 122.
  45. Gonçalves C.A.M., Dantas P.M.S., dos Santos I.K. et al. Effect of Acute and Chronic Aerobic Exercise on Immunological Markers: A Systematic Review // Front. Physiol. 2020. V. 10. P. 1602.
  46. Florin A., Lambert C., Sanchez C. et al. The secretome of skeletal muscle cells: A systematic review // Osteoarthr. Cartil. Open. 2020. V. 2. № 1. P. 100019.
  47. Severinsen M.C.K., Pedersen B.K. Muscle–Organ Crosstalk: The Emerging Roles of Myokines // Endocr. Rev. 2020. V. 41. № 4. P. 594.
  48. Izumiya Y., Bina H.A., Ouchi N. et al. FGF21 is an Akt-regulated myokine // FEBS Lett. 2008. V. 582. № 27. P. 3805.
  49. Catoire M., Mensink M., Kalkhoven E. et al. Identification of human exercise-induced myokines using secretome analysis // Physiol. Genomics. 2014. V. 46. № 7. P. 256.
  50. Broholm C., Laye M.J., Brandt C. et al. LIF is a contraction-induced myokine stimulating human myocyte proliferation // J. Appl. Physiol. 2011. V. 111. № 1. P. 251.
  51. Hjorth M., Norheim F., Meen A.J. et al. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle // Physiol. Rep. 2015. V. 3. № 8. P. e12473.
  52. Gopal S. Syndecans in Inflammation at a Glance // Front. Immunol. 2020. V. 11. P. 227.
  53. Tanino Y., Chang M.Y., Wang X. et al. Syndecan-4 regulates early neutrophil migration and pulmonary inflammation in response to lipopolysaccharide // Am. J. Respir. Cell Mol. Biol. 2012. V. 47. № 2. P. 196.
  54. Rao R.R., Long J.Z., White J.P. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis // Cell. 2014. V. 157. № 6. P. 1279.
  55. Bae J.Y. Aerobic Exercise Increases Meteorin-Like Protein in Muscle and Adipose Tissue of Chronic High-Fat Diet-Induced Obese Mice // Biomed Res. Int. 2018. V. 2018. P. 6283932.
  56. Aoi W., Naito Y., Takagi T. et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise // Gut. 2013. V. 62. № 6. P. 882.
  57. Said N.A., Elmarakby A.A., Imig J.D. et al. SPARC ameliorates ovarian cancer-associated inflammation // Neoplasia. 2008. V. 10. № 10. P. 1092.
  58. Aoyama T., Inokuchi S., Brenner D.A., Seki E. CX3CL1-CX3CR1 interaction prevents CCl4 induced liver inflammation and fibrosis // Hepatology. 2010. V. 52. № 4. P. 1390.
  59. Cardona A.E., Pioro E.P., Sasse M.E. et al. Control of microglial neurotoxicity by the fractalkine receptor // Nat. Neurosci. 2006. V. 9. № 7. P. 917.
  60. Haskell C.A., Cleary M.D., Charo I.F. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction: Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation // J. Biol. Chem. 1999. V. 274. № 15. P. 10053.
  61. Lee Y.S., Morinaga H., Kim J.J. et al. The fractalkine/CX3CR1 system regulates β cell function and insulin secretion // Cell. 2013. V. 153. № 2. P. 413.
  62. Wong B.W.C., Wong D., McManus B.M. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease // Cardiovasc. Pathol. 2002. V. 11. № 6. P. 332.
  63. Imai T., Hieshima K., Haskell C. et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion // Cell. 1997. V. 91. № 4. P. 521.
  64. Gleeson M., Bishop N.C., Stensel D.J. et al. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease // Nat. Rev. Immunol. 2011. V. 11. № 9. P. 607.
  65. Ben Ounis O., Elloumi M., Lac G. et al. Two-month effects of individualized exercise training with or without caloric restriction on plasma adipocytokine levels in obese female adolescents // Ann. Endocrinol. (Paris). 2009. V. 70. № 4. P. 235.
  66. Mujumdar P.P., Duerksen-Hughes P.J., Firek A.F., Hessinger D.A. Long-term, progressive, aerobic training increases adiponectin in middle-aged, overweight, untrained males and females // Scand. J. Clin. Lab. Invest. 2011. V. 71. № 2. P. 101.
  67. Chow L.S., Gerszten R.E., Taylor J.M. et al. Exerkines in health, resilience and disease // Nat. Rev. Endocrinol. 2022. V. 18. № 5. P. 273.
  68. Irwin M.R. Sleep and inflammation: partners in sickness and in health // Nat. Rev. Immunol. 2019. V. 19. № 11. P. 702.
  69. van Leeuwen W.M.A., Lehto M., Karisola P. et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP // PLoS One. 2009. V. 4. № 2. P. e4589.
  70. Irwin M.R., Olmstead R., Carroll J.E. Archival Report Sleep Disturbance, Sleep Duration, and In fl ammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation // Biol. Psychiatry. 2016. V. 80. № 1. P. 40.
  71. Said E.A., Al-Abri M.A., Al-Saidi I. et al. Sleep deprivation alters neutrophil functions and levels of Th1-related chemokines and CD4 + T cells in the blood // Sleep Breath. 2019. V. 23. № 4. P. 1331.
  72. Lasselin J., Rehman J., Åkerstedt T. et al. Brain, Behavior, and Immunity Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations // Brain Behav. Immun. 2015. V. 47. P. 93.
  73. Dolezal B.A., Neufeld E.V., Boland D.M. et al. Interrelationship between Sleep and Exercise: A systematic review // Adv. Prev. Med. 2017. V. 2017. P. 1364387.
  74. Xie Y., Liu S., Chen X.J. et al. Effects of Exercise on Sleep Quality and Insomnia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials // Front. Psychiatry. 2021. V. 12. P. 664499.
  75. Cheval B., Maltagliati S., Sieber S. et al. Physical inactivity amplifies the negative association between sleep quality and depressive symptoms // Prev. Med. 2022. V. 164. P. 107233.
  76. Koohsari M.J., Yasunaga A., Mccormack G.R. et al. Sedentary behaviour and sleep quality // Sci. Rep. 2023. V. 13. № 1. P. 1180.
  77. Uchida S., Shioda K., Morita Y. et al. Exercise effects on sleep physiology // Front. Neurol. 2012. V. 3. P. 48.
  78. Liu Y., Wang Y., Jiang C. Inflammation: The Common Pathway of Stress-Related Diseases // Front. Hum. Neurosci. 2017. V. 11. P. 316.
  79. Artemenkov A.A. [Age-dependent disregulation of the immune response in humans] // Med. Immunol. 2021. V. 23. № 5. P. 1005.
  80. Marsland A.L., Walsh C., Lockwood K., John-henderson N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta- analysis // Brain Behav. Immun. 2017. V. 64. P. 208.
  81. Lockwood K.G., Marsland A.L., Cohen S., Gianaros P.J. Sex differences in the association between stressor-evoked interleukin-6 reactivity and C-reactive protein // Brain. Behav. Immun. 2016. V. 58. P. 173.
  82. Tamminen N., Reinikainen J., Appelqvist-schmidlechner K. et al. Associations of physical activity with positive mental health: A population- based study // Ment. Health Phys. Act. 2020. V. 18. № 24. P. 100319.
  83. Peluso M.A., Guerra de Andrade L.H. Physical Activity and Mental Health: Associations between Exercise and Mood // Clinics. 2005. V. 60. № 1. P. 61.
  84. Caplin A., Chen F.S., Beauchamp M.R., Puterman E. Psychoneuroendocrinology The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor // Psychoneuroendocrinology. 2021. V. 131. P. 105336.
  85. Corazza D.I., Sebastião É., Teodorov E., Santos-galduróz R.F. Influence of chronic exercise on serum cortisol levels in older adults // Eur. Rev. Aging Phys. Act. 2014. V. 11. № 1. P. 25.
  86. Rimmele U., Zellweger B.C., Marti B. et al. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men // Psychoneuroendocrinology. 2007. V. 32. № 6. P. 627.
  87. Klaperski S., von Dawans B., Heinrichs M., Fuchs R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial // J. Behav. Med. 2014. V. 37. P. 1118.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences