Интеграция вестибулярного, зрительного и проприоцептивного входов в коре головного мозга при управлении движениями
- Авторы: Бадаква А.М.1, Миллер Н.В.1, Зобова Л.Н.1
 - 
							Учреждения: 
							
- ФГБУН ГНЦ РФ – Институт медико-биологических проблем РАН
 
 - Выпуск: Том 49, № 2 (2023)
 - Страницы: 99-107
 - Раздел: ОБЗОРЫ
 - URL: https://clinpractice.ru/0131-1646/article/view/664009
 - DOI: https://doi.org/10.31857/S0131164622600422
 - EDN: https://elibrary.ru/GCASTZ
 - ID: 664009
 
Цитировать
Полный текст
Аннотация
Проведенный обзор литературных данных посвящен интеграции вестибулярного, зрительного и проприоцептивного входов в различных областях коры мозга у человека и обезьян во время управления движениями. Несмотря на обилие исследований многочисленных областей коры, имеющих вестибулярные и сенсомоторные входы, их функции и связи недостаточно изучены и понятны. В обзоре приведен относительно подробный анализ данных недавних исследований трех областей коры, участвующих в управлении движениями: области 7а задней париетальной коры, в которой ответы на комбинированный зрительно-вестибулярный стимул имели тенденцию к доминированию вестибулярного входа над зрительным; зрительной области поясной борозды, которая предположительно интегрирует не только зрительные и вестибулярные афферентные сигналы, но и проприоцептивные сигналы от нижних конечностей, благодаря чему обеспечивает взаимодействие между сенсорной и моторной системами во время локомоции; и области верхней теменной дольки, в которой взаимодействуют зрительный и соматический входы, позволяя управлять поведением во время движения рукой для достижения и захвата цели. Сделан вывод о необходимости сочетания в будущих исследованиях сложных естественных задач с нормативными моделями поведения для понимания того, как мозг преобразует сенсорные входные данные в поведенческий формат.
Об авторах
А. М. Бадаква
ФГБУН ГНЦ РФ – Институт медико-биологических проблем РАН
														Email: nvmiller@mail.ru
				                					                																			                												                								Россия, Москва						
Н. В. Миллер
ФГБУН ГНЦ РФ – Институт медико-биологических проблем РАН
							Автор, ответственный за переписку.
							Email: nvmiller@mail.ru
				                					                																			                												                								Россия, Москва						
Л. Н. Зобова
ФГБУН ГНЦ РФ – Институт медико-биологических проблем РАН
														Email: nvmiller@mail.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Feldman A.G., Zhang L. Eye and head movements and vestibulo-ocular reflex in the context of indirect, referent control of motor actions // J. Neurophysiol. 2020. V. 124. № 1. P. 115.
 - Smith A.T., Greenlee M.W., DeAngelis G.C., Angelaki D.E. Distributed visual–vestibular processing in the cerebral cortex of man and macaque // Multisens. Res. 2017. V. 30. № 2. P. 91.
 - Chen A., DeAngelis G.C., Angelaki D.E. A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area // J. Neurosci. 2011. V. 31. № 8. P. 3082.
 - Avila E., Lakshminarasimhan K.J., DeAngelis G.C., Angelaki D.E. Visual and vestibular selectivity for self-motion in macaque posterior parietal area 7a // Cerebr. Cortex. 2019. V. 29. № 9. P. 3932.
 - Smith A.T. Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion // Brain Struct. Funct. 2021. V. 226. № 9. P. 2931.
 - Gamberini M., Passarelli L., Filippini M. et al. Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule // Brain Struct. Funct. 2021. V. 226. № 9. P. 2951.
 - Wilber A.A., Skelin I., Wu W., McNaughton B.L. Laminar organization of encoding and memory reactivation in the parietal cortex // Neuron. 2017. V. 95. № 6. P. 1406.e5.
 - Kondo H., Saleem K.S., Price J.L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys // J. Comp. Neurol. 2005. V. 493. № 4. P. 479.
 - Barrow C.J., Latto R. The role of inferior parietal cortex and fornix in route following and topograhic orientation in cynomolgus monkeys // Behav. Brain Res. 1996. V. 75. № 1–2. P. 99.
 - Raffi M., Siegel R.M. A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey // PLoS One. 2007. V. 2. № 2. P. e200.
 - Pouget A., Sejnowski T.J. Spatial transformations in the parietal cortex using basis functions // J. Cogn. Neurosci. 1997. V. 9. № 2. P. 222.
 - Rozzi S., Calzavara R., Belmalih A. et al. Cortical connections of the inferior parietal cortical convexity of the macaque monkey // Cereb. Cortex. 2006. V. 16. № 10. P. 1389.
 - Snyder L.H., Grieve K.L., Brotchie P., Andersen R.A. Separate body-and world-referenced representations of visual space in parietal cortex // Nature. 1998. V. 394. № 6696. P. 887.
 - Britten K.H. Mechanisms of self-motion perception // Annu. Rev. Neurosci. 2008. V. 31. P. 389.
 - Chen A., DeAngelis G.C., Angelaki D.E. Functional specializations of the ventral intraparietal area for multisensory heading discrimination // J. Neurosci. 2013. V. 33. № 8. P. 3567.
 - Medendorp W.P., Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states // Prog. Neurobiol. 2019. V. 183. P. 101691.
 - Dukelow S.P., DeSouza J.F.X., Culham J.C. et al. Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements // J. Neurophysiol. 2001. V. 86. № 4. P. 1991.
 - Wall M.B., Smith A.T. The representation of egomotion in the human brain // Cur. Biol. 2008. V. 18. № 3. P. 191.
 - Antal A., Baudewig J., Paulus W., Dechent P. The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion // Vis. Neurosci. 2008. V. 25. № 1. P. 17.
 - Wada A., Sakano Y., Ando H. Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation // Front. Psychol. 2016. V. 7. P. 309.
 - Pitzalis S., Serra C., Sulpizio V.C. et al. Neural bases of self-and object-motion in a naturalistic vision // Hum. Brain Map. 2020. V. 41. № 4. P. 1084.
 - Smith A.T., Beer A.L., Furlan M., Mars R.B. Connectivity of the cingulate sulcus visual area (CSv) in the human cerebral cortex // Cereb. Cortex. 2018. V. 28. № 2. P. 713.
 - Cottereau B.R., Smith A.T., Rima S. et al. Processing of egomotion-consistent optic flow in the rhesus macaque cortex // Cereb. Cortex. 2017. V. 27. № 1. P. 330.
 - Picard N., Strick P.L. Imaging the premotor areas // Cur. Opin. Neurobiol. 2001. V. 11. № 6. P. 663.
 - Fetsch C.R., DeAngelis G.C., Angelaki D.E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons // Nat. Rev. Neurosci. 2013. V. 14. № 6. P. 429.
 - Habas C. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T // Neuroradiol. 2010. V. 52. № 1. P. 47.
 - Serra C., Galletti C., Di Marco S. et al. Egomotion-related visual areas respond to active leg movements // Hum. Brain Map. 2019. V. 40. № 11. P. 3174.
 - Graziano M.S.A., Cooke D.F., Taylor C.S.R. Coding the location of the arm by sight // Science. 2000. V. 290. № 5497. P. 1782.
 - Galletti C., Fattori P. The dorsal visual stream revisited: stable circuits or dynamic pathways? // Cortex. 2018. V. 98. P. 203.
 - Galletti C., Fattori P., Gamberini M., Kutz D.F. The cortical visual area V6: brain location and visual topography // Eur. J. Neurosci. 1999. V. 11. № 11. P. 3922.
 - Gamberini M., Dal B.G., Breveglieri R. et al. Sensory properties of the caudal aspect of the macaque’s superior parietal lobule // Brain Struct. Funct. 2018. V. 223. № 4. P. 1863.
 - De Vitis M., Breveglieri R., Hadjidimitrakis K. et al. The neglected medial part of macaque area PE: segregated processing of reach depth and direction // Brain Struct. Funct. 2019. V. 224. № 7. P. 2537.
 - Galletti C., Fattori P. Neuronal mechanisms for detection of motion in the field of view // Neuropsychologia. 2003. V. 41. № 13. P. 1717.
 - Gamberini M., Passarelli L., Fattori P., Galletti C. Structural connectivity and functional properties of the macaque superior parietal lobule // Brain Struct. Funct. 2020. V. 225. № 4. P. 1349.
 - Fattori P., Breveglieri R., Bosco A. et al. Vision for prehension in the medial parietal cortex // Cereb. Cortex. 2017. V. 27. № 2. P. 1149.
 - Pitzalis S., Hadj-Bouziane F., Dal Bò G. et al. Optic flow selectivity in the macaque parieto-occipital sulcus // Brain Struct. Funct. 2021. V. 226. № 9. P. 2911.
 - Di Marco S., Fattori P., Galati G. et al. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas // Cortex. 2021. V. 137. P. 74.
 - Hadjidimitrakis K., Bertozzi F., Breveglieri R. et al. Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space // Brain Struct. Funct. 2017. V. 222. № 4. P. 1959.
 - Diomedi S., Vaccari F.E., Filippini M. et al. Mixed selectivity in macaque medial parietal cortex during eye-hand reaching // iScience. 2020. V. 23. № 10. P. 101616.
 - Pitzalis S., Serra C., Sulpizio V. et al. A putative human homologue of the macaque area PEc // Neuroimage. 2019. V. 202. P. 116092.
 - Rathelot J.A., Dum R.P., Strick P.L. Posterior parietal cortex contains a command apparatus for hand movements // Proc. Natl. Acad. Sci. U.S.A. 2017. V. 114. № 16. P. 4255.
 - Passarelli L., Gamberini M., Fattori P. The superior parietal lobule of primates: A sensory-motor hub for interaction with the environment // J. Integr. Neurosci. 2021. V. 20. № 1. P. 157.
 - Cullen K.E. Vestibular processing during natural self-motion: implications for perception and action // Nat. Rev. Neurosci. 2019. V. 20. № 6. P. 346.
 - Lakshminarasimhan K.J., Pouget A., DeAngelis G.C. et al. Inferring decoding strategies for multiple correlated neural populations // PLoS Comput. Biol. 2018. V. 14. № 9. P. e1006371.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



