Hybrid antimicrobial coating based on conjugate of hyaluronic acid with peptide LL-37 for PEO-modified titanium implants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A conjugate of hyaluronic acid and antimicrobial peptide LL-37 was synthesized for the first time. The hybrid compound was tested as an antimicrobial organic coating for titanium samples with an inorganic sublayer obtained by plasma electrolytic oxidation (PEO) of the surface. As a result of in vitro studies, the antibacterial effect of the hybrid molecule within the inorganic PEO coating was established, which consists of a significant (p < 0.05) suppression of the ability of Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecium and Escherichia coli to form biofilms. The presented approach can be utilized for the subsequent design and development of non-fouling antimicrobial coatings to decrease the risk of infectious diseases caused by bacteria when using implants.

Full Text

Restricted Access

About the authors

L. V. Parfenova

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences

Author for correspondence.
Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450075, Ufa, prosp. Oktyabrya, 141

Z. R. Galimshina

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450075, Ufa, prosp. Oktyabrya, 141

G. U. Gil’fanova

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450075, Ufa, prosp. Oktyabrya, 141

E. I. Alibaeva

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450075, Ufa, prosp. Oktyabrya, 141

T. M. Pashkova

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 460000, Orenburg, ul. Pionerskaya, 11

O. L. Kartashova

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 460000, Orenburg, ul. Pionerskaya, 11

R. G. Farrakhov

Ufa University of Science and Technology

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450076, Ufa, ul. Zaki Validi, 32

V. R. Aubakirova

Ufa University of Science and Technology

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450076, Ufa, ul. Zaki Validi, 32

E. V. Parfenov

Ufa University of Science and Technology

Email: luda_parfenova@ipc-ras.ru
Russian Federation, 450076, Ufa, ul. Zaki Validi, 32

References

  1. Elias C.N., Lima J.H.C., Valiev R., Meyers M.A. // JOM. 2008. V. 60. P. 46–49. https://doi.org/10.1007/s11837-008-0031-1
  2. Geetha M., Singh A.K., Asokamani R., Gogia A.K. // Prog. Mater. Sci. 2009. V. 54. P. 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
  3. Chen Q., Thouas G.A. // Mater. Sci. Eng. R Rep. 2015. V. 87. P. 1–57. https://doi.org/10.1016/j.mser.2014.10.001
  4. Franz S., Rammelt S., Scharnweber D., Simon J.C. // Biomaterials. 2011. V. 32. P. 6692–6709. https://doi.org/10.1016/j.biomaterials.2011.05.078
  5. Zhou G., Groth T. // Macromol. Biosci. 2018. V. 18. P. 1800112. https://doi.org/10.1002/mabi.201800112
  6. Meyers S.R., Grinstaff M.W. // Chem. Rev. 2012. V. 112. P. 1615–1632. https://doi.org/10.1021/cr2000916
  7. Zhang B.G.X., Myers D.E., Wallace G.G., Brandt M., Choong P.F.M. // Int. J. Mol. Sci. 2014. V. 15. P. 11878. https://doi.org/10.3390/ijms150711878
  8. Han A., Tsoi J.K.H., Rodrigues F.P., Leprince J.G., Palin W.M. // Int. J. Adhesion Adhesives. 2016. V. 69. P. 58–71. https://doi.org/10.1016/j.ijadhadh.2016.03.022
  9. Chouirfa H., Bouloussa H., Migonney V., Falentin- Daudré C. // Acta Biomater. 2019. V. 83. P. 37–54. https://doi.org/10.1016/j.actbio.2018.10.036
  10. Rice L.B. // J. Infect. Dis. 2008. V. 197. P. 1079. https://doi.org/10.1086/533452
  11. Pringle N.A., Dube A., Adam R.Z., D’Souza S., Aucamp M. // Materials. 2021. V. 14. P. 3167. https://doi.org/10.3390/ma14123167
  12. Wang J., Dou X., Song J., Lyu Y., Zhu X., Xu L., Li W., Shan A. // Med. Res. Rev. 2019. V. 39. P. 831–859. https://doi.org/10.1002/med.21542
  13. Mahlapuu M., Håkansson J., Ringstad L., Björn C. // Front. Cell. Infect. Microbiol. 2016. V. 6. P. 194. https://doi.org/10.3389/fcimb.2016.00194
  14. Riool M., de Breij A., Drijfhout J.W., Nibbering P.H., Zaat S.A.J. // Front. Chem. 2017. V. 5. P. 63. https://doi.org/10.3389/fchem.2017.00063
  15. Costa B., Martínez-de-Tejada G., Gomes P.A.C., Martins M.C.L., Costa F. // Pharmaceutics. 2021. V. 13. P. 1918. https://doi.org/10.3390/pharmaceutics13111918
  16. Mookherjee N., Brown K.L., Bowdish D.M.E., Doria S., Falsafi R., Hokamp K., Roche F.M., Mu R., Doho G.H., Pistolic J., Powers J.-P., Bryan J., Brinkman F.S.L., Hancock R.E.W. // J. Immunol. 2006. V. 176. P. 2455–2464. https://doi.org/10.4049/jimmunol.176.4.2455
  17. Duplantier A.J., van Hoek M.L. // Front. Immunol. 2013. V. 4. P. 143. https://doi.org/10.3389/fimmu.2013.00143
  18. Neshani A., Zare H., Eidgahi M.R.A., Kakhki R.K., Safdari H., Khaledi A., Ghazvini K. // Gene Rep. 2019. V. 17. Р. 100519. https://doi.org/10.1016/j.genrep.2019.100519
  19. Gabriel M., Nazmi K., Veerman E.C., Amerongen A.V.N., Zentner A. // Bioconjug. Chem. 2006. V. 17. P. 548–550. https://doi.org/10.1021/bc050091v
  20. He Y., Mu C., Shen X., Yuan Z., Liu J., Chen W., Lin Ch., Tao B., Liu B., Cai K. // Acta Biomater. 2018. V. 80. P. 412–424. https://doi.org/10.1016/j.actbio.2018.09.036
  21. Parfenova L.V., Galimshina Z.R., Gil’fanova G.U., Aliba- eva E.I., Danilko K.V., Pashkova T.M., Kartashova O.L., Farrakhov R.G., Mukaeva V.R., Parfenov E.V., Nagumo- thu R., Valiev R.Z. // Surf. Interfaces. 2022. V. 28. P. 101678. https://doi.org/10.1016/j.surfin.2021.101678
  22. Volpi N., Schiller J., Stern R., Soltés L. // Curr. Med. Chem. 2009. V. 16. P. 1718–1745. https://doi.org/10.2174/092986709788186138
  23. Brubaker C.E., Messersmith Ph.B. // Langmuir. 2012. V. 28. P. 2200–2205. https://doi.org/10.1021/la300044v
  24. Schante C., Zuber G., Vandamme Th. // Carbohyd. Pol. 2011. V. 85. P. 469–489. https://doi.org/10.1016/j.carbpol.2011.03.019
  25. Bastow E.R., Byers S., Golub S.B., Clarkin C.E., Pitsilli- des A.A., Fosang A.J. // J. Cell. Mol. Life Sci. 2008. V. 65. P. 395–413. https://doi.org/10.1007/s00018-007-7360-z
  26. Day A.J., de la Motte C.A. // Trends Immunol. 2005. V. 26. P. 637–643. https://doi.org/10.1016/j.it.2005.09.009
  27. Stern R., Asari A.A., Sugahara K.N. // Eur. J. Cell. Biol. 2006. V. 85. P. 699–715. https://doi.org/10.1016/j.ejcb.2006.05.009
  28. Parfenov E.V., Parfenova L.V., Dyakonov G.S., Danil- ko K.V., Mukaeva V.R., Farrakhov R.G., Lukina E.S., Valiev R.Z. // Surf. Coatings Technol. 2019. V. 357. P. 669–683. https://doi.org/10.1016/j.surfcoat.2018.10.068
  29. Parfenova L.V., Lukina E.S., Galimshina Z.R., Gil’fano- va G.U., Mukaeva V.R., Farrakhov R.G., Danilko K.V., Dyakonov G.S., Parfenov E.V. // Molecules. 2020. V. 25. P. 229. https://doi.org/10.3390/molecules25010229
  30. Parfenov E.V., Parfenova L.V., Mukaeva V.R., Farrak- hov R.G., Stotskiy A., Raab A., Danilko K.V., Nagumo- thu R., Valiev R.Z. // Surf. Coatings Technol. 2020. V. 404. P. 126486. https://doi.org/10.1016/j.surfcoat.2020.126486
  31. Pouyani T., Prestwich G.D. // Bioconjug. Chem. 1994. V. 5. P. 339. https://doi.org/10.1021/bc00028a010
  32. Varghese O.P., Sun W., Hilborn J., Ossipov D.A. // J. Am. Chem. Soc. 2009. V. 131. P. 8781. https://doi.org/10.1021/ja902857b
  33. Vercruysse K.P., Marecak D.M., Marecek J.F., Prest- wich G.D. // Bioconjug. Chem. 1997. V. 8. P. 686–694. https://doi.org/10.1021/bc9701095
  34. Hu X., Neoh K.-G., Shi Z., Kang E.-T., Poh C., Wang W. // Biomaterials. 2010. V. 31. P. 8854. https://doi.org/10.1016/j.biomaterials.2010.08.006
  35. Chua P.H., Neoh K.G., Shi Z., Kang E.T. // Biomed. Mater. Res. A. 2008. V. 87A. P. 1061–1074. https://doi.org/10.1002/jbm.a.31854
  36. Lv H., Chen Z., Yang X., Cen L., Zhang X., Gao P. // J. Dent. 2014. V. 42. P. 1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003
  37. Shu X.Z., Liu Y., Luo Y., Roberts M.C., Prestwich G.D. // Biomacromolecules. 2002. V. 3. P. 1304–1311. https://doi.org/10.1021/bm025603c
  38. Nielsen О., Buchardt O. // Synthesis. 1991. V. 10. P. 819–821. https://doi.org/10.1055/s-1991-26579
  39. Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segura- do J., Sitdikov V.D., Alexandrov I.V., Enikeev N.A., Vali- ev R.Z. // Mater. Sci. Eng. A. 2013. V. 562. P. 128–136. https://doi.org/10.1016/j.msea.2012.11.007
  40. Dyakonov G.S., Zemtsova E., Mironov S., Semenova I.P., Valiev R.Z., Semiatin S.L. // Mater. Sci. Eng. A. 2015. V. 648. P. 305–310. https://doi.org/10.1016/j.msea.2015.09.080
  41. O’Toole G., Kaplan H.B., Kolter R. // Ann. Rev. Microbiol. 2000. V. 54. P. 49–79. https://doi.org/10.1146/annurev.micro.54.1.49

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Synthesis of a hybrid molecule (V) based on hyaluronic acid and antimicrobial peptide LL-37: i – EDC, H2O, pH 4.75, 18-20 °C, 2 h; ii – DTT, H2O, pH 7→8.5, 18-20°C, 24 h; iii – acetone–H2O, pH 7, 18-20°C, 2 h; iv– GC-SH (III), H2O, pH 4.75→7, 36-38°C, 2 h.

Download (489KB)
3. Fig. 1. 1H-NMR spectra of compounds (III–V) and antimicrobial peptide LL-37 in D2O: (a) – hybrid molecule HA–LL-37 (V); (b) – HA-SH (III) (DS = 15%); (c) – conjugate EMCS–LL-37 (IV); (g) – peptide LL-37.

Download (689KB)

Copyright (c) 2024 Russian Academy of Sciences