Gene Therapy Drugs Based on Synthetic Oligonucleotides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of medicines, the structure of which resembles or is completely identical to the natural components of a living organism, is currently a promising and of great interest among scientists. The invention of a synthetic analog of nucleic acids was carried out due to the active development of oligonucleotide synthesis in the 1980s and subsequent research in the field of chemical modification of the nucleotide, which made it possible to change the properties of nucleic acids and increase their stability. The accumulated world experience has made it possible to create medicines based on synthetic oligonucleotides aimed at the treatment of rare genetic diseases. Since 1998, a relatively small number of drugs have been approved by regulatory authorities in different countries for use in clinical practice. Most of them are aimed at the treatment of orphan diseases. To date, there are 20 therapeutic drugs based on synthetic oligonucleotides that have been approved by medical regulatory authorities for use in clinical practice. Of this list, only one drug was developed in Russia (MIR 19®). This review describes all drugs based on synthetic oligonucleotides approved for 2024, and also examines and systematizes current knowledge about promising types of therapeutic oligonucleotides with different mechanisms of interaction with the target.

Full Text

Restricted Access

About the authors

I. B. Kozlov

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Author for correspondence.
Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

O. A. Gerasimov

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

O. Y. Domasheva

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

L. G. Bushina

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

L. A. Safonova

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

V. V. Makarov

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

V. S. Yudin

Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency

Email: IKozlov@cspfmba.ru
Russian Federation, ul. Pogodinskaya 10/1, Moscow, 119121

References

  1. Watson J.D., Crick F.H.C. // Nature. 1953. V. 171. P. 737–738. https://doi.org/10.1038/171737a0
  2. Michelson A., Todd A. // J. Chem. Soc. Res. 1955. P. 2632–2638. https://doi.org/10.1039/jr9550002632
  3. Khorana H.G., Razzell W.E., Gilham P.T., Tener G.M., Pol E.H. // J. Am. Chem. Soc. 1957. V. 79. P. 1002– 1003. https://doi.org/10.1021/ja01561a065
  4. Letsinger R.L., Ogilvie K.K. // J. Am. Chem. Soc. 1969. V. 91. P. 3350–3355. https://doi.org/10.1021/ja01040a042
  5. Letsinger R.L., Lunsford W.B. // J. Am. Chem. Soc. 1976. V. 98. P. 3655–3661. https://doi.org/10.1021/ja00428a045
  6. Beaucage S.L., Caruthers M.H. // Tetrahedron Lett. 1981. V. 22. P. 1859–1862. https://doi.org/10.1016/s0040-4039(01)90461-7
  7. McBride L.J., Caruthers M.H. // Tetrahedron Lett. 1983. V. 24. P. 245–248. https://doi.org/10.1016/s0040-4039(00)81376-3
  8. Hoover D.M., Lubkowski J. // Nucleic Acids Res. 2002. V. 30. P. e43. https://doi.org/10.1093/nar/30.10.e43
  9. Smith H.O., Hutchison C.A., Pfannkoch C., Venter J.C. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 15440–15445. https://doi.org/10.1073/pnas.2237126100
  10. Erlich H.A., Bugawan T.L. // In: PCR Technology / Ed. Erlich H.A. Palgrave Macmillan, London, 1989. P. 193–208. https://doi.org/10.1007/978-1-349-20235-5_16
  11. Schütze T., Wilhelm B., Greiner N., Braun H., Peter F., Mörl M., Erdmann V.A., Lehrach H., Konthur Z., Menger M. // Plos One. 2011. V. 6. P. e29604. https://doi.org/10.1371/journal.pone.0029604
  12. Grada A., Weinbrecht K. // J. Invest. Dermatol. 2013. V. 133. P. 1–4. https://doi.org/10.1038/jid.2013.248
  13. Gnirke A., Melnikov A., Maguire J., Rogov P., LeProust E.M., Brockman W., Fennell T., Giannoukos G., Fisher S., Russ C. // Nat. Biotechnol. 2009. V. 27. P. 182–189. https://doi.org/10.1038/nbt.1523
  14. Kelley M.L., Strezoska Ž., He K., Vermeulen A., Smith A. van B. // J. Biotechnol. 2016. V. 233. P. 74–83. https://doi.org/10.1016/j.jbiotec.2016.06.011
  15. Palumbo C.M., Gutierrez-Bujari J.M., O’Geen H., Segal D.J., Beal P.A. // Chembiochem. 2020. V. 21. P. 1633–1640. https://doi.org/10.1002/cbic.201900736
  16. Lundin K.E., Gissberg O., Smith C.I.E. // Hum. Gene Ther. 2015. V. 26. P. 475–485. https://doi.org/10.1089/hum.2015.070
  17. Shen X., Corey D.R. // Nucleic Acids Res. 2017. V. 46. P. 1584–1600. https://doi.org/10.1093/nar/gkx1239
  18. Corey D.R. // Nat. Neurosci. 2017. V. 20. P. 497–499. https://doi.org/10.1038/nn.4508
  19. Kijas J.M., Fowler J.C., Garbett C.A., Thomas M.R. // Biotechniques. 1994. V. 16. P. 656–660, 662.
  20. Niemeyer C.M., Sano T., Smith C.L., Cantor C.R. // Nucleic Acids Res. 1994. V. 22. P. 5530–5539. https://doi.org/10.1093/nar/22.25.5530
  21. Didenko V.V. // Biotechniques. 2001. V. 31. P. 1106– 1121. https://doi.org/10.2144/01315rv02
  22. Benizri S. Gissot A., Martin A., Vialet B., Grinstaff M.W., Barthélémy P. // Bioconjug. Chem. 2019. V. 30. P. 366–383. https://doi.org/10.1021/acs.bioconjchem.8b00761
  23. Provenzano M., Mocellin S. // Adv. Exp. Med. Biol. 2007. V. 593. P. 66–73. https://doi.org/10.1007/978-0-387-39978-2_7
  24. Brannagan T.H., Berk J.L., Gillmore J.D., Maurer M.S., Waddington-Cruz M., Fontana M., Masri A., Obici L., Brambatti M., Baker B.F. // J. Peripher. Nerv. Syst. 2022. V. 27. P. 228–237. https://doi.org/10.1111/jns.12519
  25. Manoharan M., Tivel K.L., Andrade L.K., Mohan V., Condon T.P., Bennett C.F., and Cook P.D. // Nucleosides Nucleotides. 1995. V. 14. P. 969–973. https://doi.org/10.1080/15257779508012513
  26. Nishina T., Numata J., Nishina K., Yoshida-Tanaka K., Nitta K., Piao W., Iwata R., Ito S., Kuwahara H., Wada T. // Mol. Ther. Nucleic Acids. 2015. V. 4. P. e220. https://doi.org/10.1038/mtna.2014.72
  27. Otero-Carrasco B., Romero-Brufau S., ÁlvarezPérez A., Ayuso-Muñoz A., Prieto-Santamaría L., Hernández J.P.C.-V., Rodríguez-González A. // bioRxiv. 2023. https://doi.org/10.1101/2023.05.03.539318
  28. Melnikova I. // Nat. Rev. Drug Discov. 2012. V. 11. P. 267–268. https://doi.org/10.1038/nrd3654
  29. Перечень редких (орфанных) заболеваний // Министерство здравоохранения Российской Федерации. 2024. https://minzdrav.gov.ru/documents/9818-perechen-redkih-orfannyh-zabolevaniy
  30. Li Z., Rana T.M. // Nat. Rev. Drug Discov. 2014. V. 13. P. 622–638. https://doi.org/10.1038/nrd4359
  31. Akimoto S., Suzuki J., Aoyama N., Ikeuchi R., Watanabe H., Tsujimoto H., Wakayama K., Kumagai H., Ikeda Y., Akazawa H. // Int. Hear. J. 2018. V. 59. P. 1134–1141. https://doi.org/10.1536/ihj.17-632
  32. Abaturov A.Ye., Volosovets A.P., Yulish Ye.I. // Здоровье ребенка. 2014. № 6(57). С. 131–136. https://doi.org/10.22141/2224-0551.6.57.2014.75743
  33. Nakamura H., Oda Y., Iwai S., Inoue H., Ohtsuka E., Kanaya S., Kimura S., Katsuda C., Katayanagi K., Morikawa K. // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 11535–11539. https://doi.org/10.1073/pnas.88.24.11535
  34. Vickers T.A., Crooke S.T. // Nucleic Acids Res. 2015. V. 43. P. 8955–8963. https://doi.org/10.1093/nar/gkv920
  35. Roehr B. // J. Int. Assoc. Physicians AIDS Care. 1998. V. 4. P. 14–16.
  36. Hoy S.M. // Drugs. 2017. V. 77. P. 473–479. https://doi.org/10.1007/s40265-017-0711-7
  37. Ottesen E.W. // Transl. Neurosci. 2017. V. 8. P. 1–6. https://doi.org/10.1515/tnsci-2017-0001
  38. The Nobel Prize in Physiology or Medicine 2024. https://www.nobelprize.org/prizes/medicine/2024/advanced-information/
  39. Ho P.T.B., Clark I.M., Le L.T.T. // Int. J. Mol. Sci. 2022. V. 23. P. 7167. https://doi.org/10.3390/ijms23137167
  40. Krützfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., Stoffel M. // Nature. 2005. V. 438. P. 685–689. https://doi.org/10.1038/nature04303
  41. Gallant-Behm C.L., Piper J., Lynch J.M., Seto A.G., Hong S.J., Mustoe T.A., Maari C., Pestano L.A., Dalby C.M., Jackson A.L. // J. Investig. Dermatol. 2019. V. 139. P. 1073–1081. https://doi.org/10.1016/j.jid.2018.11.007
  42. Woolf T.M., Chase J.M., Stinchcomb D.T. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 8298–8302. https://doi.org/10.1073/pnas.92.18.8298
  43. Qu L., Yi Z., Zhu S., Wang C., Cao Z., Zhou Z., Yuan P., Yu Y., Tian F., Liu Z. // Nat. Biotechnol. 2019. V. 37. P. 1059–1069. https://doi.org/10.1038/s41587-019-0178-z
  44. Merkle T., Merz S., Reautschnig P., Blaha A., Li Q., Vogel P., Wettengel J., Li J.B., Stafforst T. // Nat. Biotechnol. 2019. V. 37. P. 133–138. https://doi.org/10.1038/s41587-019-0013-6
  45. Doherty E.E., Beal P.A. // Mol. Ther. 2022. V. 30. P. 2117–2119. https://doi.org/10.1016/j.ymthe.2022.04.005
  46. Aquino-Jarquin G. // Mol. Ther. Nucleic Acids. 2020. V. 19. P. 1065–1072. https://doi.org/10.1016/j.omtn.2019.12.042
  47. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. // Nature. 1998. V. 391. P. 806– 811. https://doi.org/10.1038/35888
  48. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. // Nature. 2001. V. 411. P. 494–498. https://doi.org/10.1038/35078107
  49. Leuschner P.J.F., Ameres S.L., Kueng S., Martinez J. // EMBO Rep. 2006. V. 7. P. 314–320. https://doi.org/10.1038/sj.embor.7400637
  50. Martinez J., Patkaniowska A., Urlaub H., Lührmann R., Tuschl T. // Cell. 2002. V. 110. P. 563–574. https://doi.org/10.1016/s0092-8674(02)00908-x
  51. Iwakawa H., Tomari Y. // Mol. Cell. 2022. V. 82. P. 30–43. https://doi.org/10.1016/j.molcel.2021.11.026
  52. Meister G. // Nat. Rev. Genet. 2013. V. 14. P. 447–459. https://doi.org/10.1038/nrg3462
  53. Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. // Mol. Cell. 2004. V. 15. P. 185–197. https://doi.org/10.1016/j.molcel.2004.07.007
  54. Sheu-Gruttadauria J. Pawlica P., Klum S.M., Wang S., Yario T.A., Oakdale N.T.S., Steitz J.A., MacRae I.J. // Mol. Cell. 2019. V. 75. P. 1243–1255.e7. https://doi.org/10.1016/j.molcel.2019.06.019
  55. Raja M.A.G., Katas H., Amjad M.W. // Asian J. Pharm. Sci. 2019. V. 14. P. 497–510. https://doi.org/10.1016/j.ajps.2018.12.005
  56. Lee S.H. Kang Y.Y., Jang H.-E., Mok H. // Adv. Drug Deliv. Rev. 2016. V. 104. P. 78–92. https://doi.org/10.1016/j.addr.2015.10.009
  57. Subhan M.A., Torchilin V. // Nanomed. Nanotechnol. Biol. Med. 2020. V. 29. P. 102239. https://doi.org/10.1016/j.nano.2020.102239
  58. Hoy S.M. // Drugs. 2018. V. 78. P. 1625–1631. https://doi.org/10.1007/s40265-018-0983-6
  59. Scott L.J. // Drugs. 2020. V. 80. P. 335–339. https://doi.org/10.1007/s40265-020-01269-0
  60. Khaitov M., Nikonova A., Shilovskiy I., Kozhikhova K., Kofiadi I., Vishnyakova L., Nikolskii A., Gattinger P., Kovchina V., Barvinskaia E. // Allergy. 2021. V. 76. P. 2840–2854. https://doi.org/10.1111/all.14850
  61. Khaitov M., Nikonova A., Kofiadi I., Shilovskiy I., Smirnov V., Elisytina O., Maerle A., Shatilov A., Shatilova A., Andreev S. // Allergy. 2023. V. 78. P. 1639–1653. https://doi.org/10.1111/all.15663
  62. Long-Cheng Li, Okino S.T., Zhao H., Pookot D., Place R.F., Urakami S., Enokida H., Dahiya R. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 17337– 17342. https://doi.org/10.1073/pnas.0607015103
  63. Sarker D., Plummer R., Meyer T., Sodergren M.H., Basu B., Chee C.E., Huang K.-W., Palmer D.H., Ma Y.T., Evans T.R.J. // Clin. Cancer Res. 2020. V. 26. P. 3936–3946. https://doi.org/10.1158/1078-0432.ccr-20-0414
  64. Hanagata N. // Int. J. Nanomed. 2017. V. 12. P. 515– 531. https://doi.org/10.2147/ijn.s114477
  65. Hanagata N., Li X., Min-Hua Chen, Li J., Hattor S. // Int. J. Nanomed. 2017. V. 13. P. 43–62. https://doi.org/10.2147/ijn.s152141
  66. Yu W., Sun J., Liu F., Yu S., Xu Z., Wang F., Liu X. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 17167– 17176. https://doi.org/10.1021/acsami.9b21075
  67. Urban-Wojciuk Z., Khan M.M., Oyler B.L., Fåhraeus R., Marek-Trzonkowska N., Nita-Lazar A., Hupp T.R., Goodlett D.R. // Front. Immunol. 2019. V. 10. P. 2388. https://doi.org/10.3389/fimmu.2019.02388
  68. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K. // Nature. 2000. V. 408. P. 740–745. https://doi.org/10.1038/35047123
  69. Vollmer J., Krieg A.M. // Adv. Drug Deliv. Rev. 2009. V. 61. P. 195–204. https://doi.org/10.1016/j.addr.2008.12.008
  70. Kang T.H. Mao C.-P., Kim Y.S., Kim T.W., Yang A., Lam B., Tseng S.-H., Farmer E., Park Y.-M., Hung C.-F. // J. Immunother. Cancer. 2019. V. 7. P. 260. https://doi.org/10.1186/s40425-019-0738-2
  71. Hager S., Fittler F.J., Wagner E., Bros M. // Cells. 2020. V. 9. P. 2061. https://doi.org/10.3390/cells9092061
  72. Klinman D.M. // Nat. Rev. Immunol. 2004. V. 4. P. 249–259. https://doi.org/10.1038/nri1329
  73. Shirota H., Klinman D.M. // Expert Rev. Vaccines. 2014. V. 13. P. 299–312. https://doi.org/10.1586/14760584.2014.863715
  74. Krug A., Rothenfusser S., Hornung V., Jahrsdörfer B., Blackwell S., Ballas Z.K., Endres S., Krieg A.M., Hartmann G. // Eur. J. Immunol. 2001. V. 31. P. 2154– 2163. https://doi.org/10.1002/1521-4141(200107)31:7<2154: :aid-immu2154>3.0.co;2-u
  75. Krieg A.M., Yi A.-K., Matson S., Waldschmidt T.J., Bishop G.A., Teasdale R., Koretzky G.A., Klinman D.M. // Nature. 1995. V. 374. P. 546–549. https://doi.org/10.1038/374546a0
  76. Nehete P.N., Williams L.E., Chitta S., Nehete B.P., Patel A.G., Ramani M.D., Wisniewski T., Scholtzova H. // Front. Aging Neurosci. 2020. V. 12. P. 36. https://doi.org/10.3389/fnagi.2020.00036
  77. Bode C., Zhao G., Steinhagen F., Kinjo T., Klinman D.M. // Expert Rev. Vaccines. 2011. V. 10. P. 499–511. https://doi.org/10.1586/erv.10.174
  78. Sun H., Zhu X., Lu P.Y., Rosato R.R., Tan W., Zu Y. // Mol. Ther. Nucleic Acids. 2014. V. 3. P. e182. https://doi.org/10.1038/mtna.2014.32
  79. Nissim A., Chernajovsky Y. // Handb. Exp. Pharmacol. 2008. V. 181. P. 3–18. https://doi.org/10.1007/978-3-540-73259-4_1
  80. Tuerk C., Gold L. // Science. 1990. V. 249. P. 505–510. https://doi.org/10.1126/science.2200121
  81. Ellington A.D., Szostak J.W. // Nature. 1990. V. 346. P. 818–822. https://doi.org/10.1038/346818a0
  82. Sheng L., Rigo F., Bennett C.F., Krainer A.R., Hua Y. // Nucleic Acids Res. 2020. V. 48. P. 2853–2865. https://doi.org/10.1093/nar/gkaa126
  83. Michaud M., Jourdan E., Villet A., Ravel A., Grosset C., Peyrin E. // J. Am. Chem. Soc. 2003. V. 125. P. 8672– 8679. https://doi.org/10.1021/ja034483t
  84. Gao F. Yin J., Chen Y., Guo C., Hu H., Su J. // Front. Bioeng. Biotechnol. 2022. V. 10. P. 972933. https://doi.org/10.3389/fbioe.2022.972933
  85. Chen X., He X., Gao R., Lan X., Zhu L., Chen K., Hu Y., Huang K., Xu W. // ACS Nano. 2022. V. 16. P. 1036–1050. https://doi.org/10.1021/acsnano.1c08690
  86. Tan K.X., Jeevanandam J., Pan S., Yon L.S., Danquah M.K. // J. Drug Deliv. Sci. Technol. 2020. V. 57. P. 101764. https://doi.org/10.1016/j.jddst.2020.101764
  87. Mauro V.D., Lauta F.C., Modica J., Appleton S.L., Franciscis V.D., Catalucci D. // JACC Basic Transl. Sci. 2023. V. 9. P. 260–277. https://doi.org/10.1016/j.jacbts.2023.06.013
  88. Liu X., Hu J., Ning Y., Xu H., Cai H., Yang A., Shi Z., Li Z. // Cell Transplant. 2023. V. 32. P. 1–11. https://doi.org/10.1177/09636897221144949
  89. Troisi R., Riccardi C., Carvasal K.P., de Smietana M., Morvan F., Vecchio P.D., Montesarchio D., Sica F. // Mol. Ther. Nucleic Acids. 2022. V. 30. P. 585–594. https://doi.org/10.1016/j.omtn.2022.11.007
  90. Chen X.-F., Zhao X., Yang Z. // J. Med. Chem. 2021. V. 64. P. 17601–17626. https://doi.org/10.1021/acs.jmedchem.1c01567
  91. Morrow P.K., Murthy R.K., Ensor J.D., Gordon G.S., Margolin K.A., Elias A.D., Urba W.J., Weng D.E., Rugo H.S., Hortobagyi G.N. // Cancer. 2012. V. 118. P. 4098–4104. https://doi.org/10.1002/cncr.26730
  92. Silverman S.K. // Org. Biomol. Chem. 2004. V. 2. P. 2701–2706. https://doi.org/10.1039/b411910j
  93. Breaker R.R., Joyce G.F. // Chem. Biol. 1994. V. 1. P. 223–229. https://doi.org/10.1016/1074-5521(94)90014-0
  94. Huo W., Li X., Wang B., Zhang H., Zhang J., Yang X., Jin Y. // Biophys. Rep. 2020. V. 6. P. 256–265. https://doi.org/10.1007/s41048-020-00123-w
  95. Santoro S.W., Joyce G.F. // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 4262–4266. https://doi.org/10.1073/pnas.94.9.4262
  96. McConnell E.M., Cozma I., Mou Q., Brennan J.D., Lu Y., Li Y. // Chem. Soc. Rev. 2021. V. 50. P. 8954– 8994. https://doi.org/10.1039/d1cs00240f
  97. Ma L., Liu J. // iScience. 2020. V. 23. P. 100815. https://doi.org/10.1016/j.isci.2019.100815
  98. Fredj Z., Singh B., Bahri M., Qin P., Sawan M. // Chemosensors. 2023. V. 11. P. 388. https://doi.org/10.3390/chemosensors11070388
  99. Nedorezova D.D., Dubovichenko M.V., Belyaeva E.P., Grigorieva E.D., Peresadina A.V., Kolpashchikov D.M. // Theranostics. 2022. V. 12. P. 7132–7157. https://doi.org/10.7150/thno.77830
  100. Nedorezova D.D., Dubovichenko M.V., Kalnin A.J., Nour M.A.Y., Eldeeb A.A., Ashmarova A.I., Kurbanov G.F., Kolpashchikov D.M. // ChemBioChem. 2024. V. 25. P. e202300637. https://doi.org/10.1002/cbic.202300637
  101. Scharner J., Ma W.K., Zhang Q., Lin K.-T., Rigo F., Bennett C.F., Krainer A.R. // Nucleic Acids Res. 2019. V. 48. P. 802–816. https://doi.org/10.1093/nar/gkz1132
  102. Yoshida T., Naito Y., Yasuhara H., Sasaki K., Kawaji H., Kawai J., Naito M., Okuda H., Obika S., Inoue T. // Genes Cells. 2019. V. 24. P. 827–835. https://doi.org/10.1111/gtc.12730
  103. Michel S., Schirduan K., Shen Y., Klar R., Tost J., Jaschinski F. // Mol. Diagn. Ther. 2021. V. 25. P. 77–85. https://doi.org/10.1007/s40291-020-00504-4
  104. Thakur S., Sinhari A., Jain P., Jadhav H.R. // Front. Pharmacol. 2022. V. 13. P. 1006304. https://doi.org/10.3389/fphar.2022.1006304
  105. Zhang X. // Front. Mol. Neurosci. 2024. V. 17. P. 1412964. https://doi.org/10.3389/fnmol.2024.1412964
  106. Roehr B. // AIDS Treat. N. 1998. V. 7. P. 14–16.
  107. Fine S.L., Martin D.F., Kirkpatrick P. // Nat. Rev. Drug Discov. 2005. V. 4. P. 187–188. https://doi.org/10.1038/nrd1677
  108. Hair P., Cameron F., McKeage K. // Drugs. 2013. V. 73. P. 487–493. https://doi.org/10.1007/s40265-013-0042-2
  109. Syed Y.Y. // Drugs. 2016. V. 76. P. 1699–1704. https://doi.org/10.1007/s40265-016-0657-1
  110. Splawn L.M., Bailey C.A., Medina J.P., Cho J.C. // Drugs Today. 2018. V. 54. P. 399–405. https://doi.org/10.1358/dot.2018.54.7.2833984
  111. Keam S.J. // Drugs. 2018. V. 78. P. 1371–1376. https://doi.org/10.1007/s40265-018-0968-5
  112. Paik J., Duggan S. // Drugs. 2019. V. 79. P. 1349–1354. https://doi.org/10.1007/s40265-019-01168-z
  113. Heo Y.-A. // Drugs. 2020. V. 80. P. 329–333. https://doi.org/10.1007/s40265-020-01267-2
  114. Dhillon S. // Drugs. 2020. V. 80. P. 1027–1031. https://doi.org/10.1007/s40265-020-01339-3
  115. Scott L.J., Keam S.J. // Drugs. 2021. V. 81. P. 277–282. https://doi.org/10.1007/s40265-020-01463-0
  116. Lamb Y.N. // Drugs. 2021. V. 81. P. 389–395. https://doi.org/10.1007/s40265-021-01473-6
  117. Shirley M. // Drugs. 2021. V. 81. P. 875–879. https://doi.org/10.1007/s40265-021-01512-2
  118. Keam S.J. // Drugs. 2022. V. 82. P. 1419–1425. https://doi.org/10.1007/s40265-022-01765-5
  119. Blair H.A. // Drugs. 2023. V. 83. P. 1039–1043. https://doi.org/10.1007/s40265-023-01904-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The mechanism of action of therapeutic nucleic acids: (a) transcript cleavage mediated by the interaction of RNase H with the duplex of the hapmer and mRNA; (b) – modulation of the splicing site shift process due to the formation of a steric block mediated by complementary binding of ASA to pre-mRNA. SSO binding sites often act as enhancers or suppressors of splicing, and double-stranded SSO pre-mRNA can block RNA–RNA or RNA-protein interactions that regulate the splicing process. The drawing is adapted from [105].

Download (233KB)
3. 2. Cleavage of messenger RNA (mRNA) under the action of the RNA-induced splicing (RIC) complex and si RNA by activating the mechanism of RNA interference.

Download (253KB)
4. Fig. 3. The mechanism of target recognition by the aptamer.

Download (172KB)

Copyright (c) 2025 Russian Academy of Sciences