Comparison of methods for rapid determination of cholesterol concentration in human sperm membrane in clinical laboratory practice
- Авторлар: Mironova A.G.1,2, Afanasyeva S.I.3, Sybachin A.V.4, Spiridonov V.V.4, Bolshakov M.A.5, Simonenko E.Y.3
-
Мекемелер:
- Human Reproduction Clinic “Altravita” (LLC “ECO CENTER”)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Physics, Department of Biophysics
- Lomonosov Moscow State University, Faculty of Chemistry, Department of High Molecular Compounds
- FSBI “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
- Шығарылым: Том 51, № 1 (2025)
- Беттер: 43-50
- Бөлім: Articles
- URL: https://clinpractice.ru/0132-3423/article/view/683095
- DOI: https://doi.org/10.31857/S0132342325010047
- EDN: https://elibrary.ru/LZVQOE
- ID: 683095
Дәйексөз келтіру
Аннотация
This study proposes a rapid method for the determination of cholesterol in human sperm membranes suitable for use in the clinical laboratory. Four physicochemical methods for the quantitative measurement of cholesterol were selected for comparison: the enzymatic cholesterol assay, the Liberman–Burkhardt method, the infrared spectroscopy and the high-performance liquid chromatography. The following cholesterol concentrations were obtained: 1.0 ± 0.3, 1.32 ± 0.15, 5.1 ± 1.8, and 1.53 ± 0.18 nmol/106 cells, respectively. The following criteria of the applicability of the method were chosen: the amount of material to be analyzed, determined by the number of spermatozoa in the seminal fluid of a single ejaculate of a patient, the number of sample preparation steps that account for the systematic error of the analysis, and the total time of the analysis. The infrared spectroscopy method requires at least 20 mg of cellular sample, which is unrealizable for estimating cholesterol in sperm membranes of a single patient. The Liberman–Burkhardt and high-performance liquid chromatography methods require multi-step sample preparation and the use of aggressive volatile reagents. In turn, the enzymatic assay is optimal for the considered criteria, it allows rapid analysis of cholesterol in the sperm membrane of a single patient, and is suitable for use within the in vitro fertilization laboratory.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Mironova
Human Reproduction Clinic “Altravita” (LLC “ECO CENTER”); N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: agm90@mail.ru
Ресей, Moscow; Moscow
S. Afanasyeva
Lomonosov Moscow State University, Faculty of Physics, Department of Biophysics
Email: agm90@mail.ru
Ресей, Moscow
A. Sybachin
Lomonosov Moscow State University, Faculty of Chemistry, Department of High Molecular Compounds
Email: agm90@mail.ru
Ресей, Moscow
V. Spiridonov
Lomonosov Moscow State University, Faculty of Chemistry, Department of High Molecular Compounds
Email: agm90@mail.ru
Ресей, Moscow
M. Bolshakov
FSBI “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
Email: agm90@mail.ru
Ресей, Pushchino
E. Simonenko
Lomonosov Moscow State University, Faculty of Physics, Department of Biophysics
Email: agm90@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Marquardt D., Kučerka N., Wassall S.R., Harroun T.A., Katsaras J. // Chem. Phys. Lipids. 2016. V. 199. P. 17–25. https://doi.org/10.1016/j.chemphyslip.2016.04.001
- Subczynski W.K., Pasenkiewicz-Gierula M., Widomska J., Mainali L., Raguz M. // Cell Biochem. Biophys. 2017. V. 75. P. 369–385. https://doi.org/10.1007/s12013-017-0792-7
- Leonard A., Escrive C., Laguerre M., Pebay-Peyroula E., Neri W., Pott T., Katsaras J., Dufourc E.J. // Langmuir. 2001. V. 17. P. 2019–2030. https://doi.org/10.1021/la001382p
- Kessel A., Ben-Tal N., May S. // Biophys. J. 2001. V. 81. P. 643–658. https://doi.org/10.1016/s0006-3495(01)75729-3
- Harroun T.A., Katsaras J., Wassall S.R. // Biochemistry. 2006. V. 45. P. 1227–1233. https://doi.org/10.1021/bi0520840
- Harroun T.A., Katsaras J., Wassall S.R. // Biochemistry. 2008. V. 47. P. 7090–7096. https://doi.org/10.1021/bi800123b
- Armstrong C.L., Marquardt D., Dies H., Kučerka N., Yamani Z., Harroun T.A., Katsaras J., Shi A.C., Rheinstädter M.C. // PLoS One. 2013. V. 8. P. e66162. https://doi.org/10.1371/journal.pone.0066162
- Armstrong C.L., Häussler W., Seydel T., Katsaras J., Rheinstädter M.C. // Soft Matter. 2014. V. 10. P. 2600–2611. https://doi.org/10.1039/c3sm51757h
- Armstrong C.L., Barrett M.A., Hiess A., Salditt T., Katsaras J., Shi A.C., Rheinstädter M.C. // Eur. Biophys. J. 2012. V. 41. P. 901–913. https://doi.org/10.1007/s00249-012-0826-4
- Kucerka N., Perlmutter J.D., Pan J., Tristram-Nagle S., Katsaras J., Sachs J.N. // Biophys. J. 2008. V. 95. P. 2792−2805. https://doi.org/10.1529/biophysj.107.122465
- Keller F., Heuer A. // Soft Matter. 2021. V. 17. P. 6098− 6108. https://doi.org/10.1039/d1sm00459j
- Leftin A., Molugu T.R., Job C., Beyer K., Brown M.F. // Biophys. J. 2014. V. 107. P. 2274−2286. https://doi.org/10.1016/j.bpj.2014.07.044
- Rog T., Pasenkiewicz-Gierula M. // FEBS Lett. 2001. V. 502. P. 68–71. https://doi.org/10.1016/s0014-5793(01)02668-0
- Dahley C., Garessus E.D.G., Ebert A., Goss K.U. // Biochim. Biophys. Acta Biomembr. 2022. V. 1864. P. 183953. https://doi.org/10.1016/j.bbamem.2022.183953
- Khatibzadeh N., Gupta S., Farrell B., Brownell W.E., Anvari B. // Soft Matter. 2012. V. 8. P. 8350−8360. https://doi.org/10.1039/c2sm25263e
- Yeagle P.L. // Biochimie. 1991. V. 73. P. 1303–1310. https://doi.org/10.1016/0300-9084(91)90093-g
- Jafurulla M., Chattopadhyay A. // Methods Mol. Biol. 2017. V. 1583. P. 21–39. https://doi.org/10.1007/978-1-4939-6875-6_3
- Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. // Biochim. Biophys. Acta. 2015. V. 1848. P. 1783–1795. https://doi.org/10.1016/j.bbamem.2015.03.029
- Epand R.M. // In: The Structure of Biological Membrane / Ed. Yeagle P.L. CRC Press, Boca Raton, 2005. P. 499–509.
- Reichow S.L., Gonen T. // Curr. Opin. Struct. Biol. 2009. V. 19. P. 560–565. https://doi.org/10.1016/j.sbi.2009.07.012
- Tong J., Briggs M.M., McIntosh T.J. // Biophys. J. 2012. V. 103. P. 1899–1908. https://doi.org/10.1016/j.bpj.2012.09.025
- Tong J., Canty J.T., Briggs M.M., McIntosh T.J. // Exp. Eye Res. 2013. V. 113. P. 32–40. https://doi.org/10.1016/j.exer.2013.04.022
- Fantini J., Epand R.M., Barrantes F.J. // Adv. Exp. Med. Biol. 2019. V. 1135. P. 3–25. https://doi.org/10.1007/978-3-030-14265-0_1
- Fantini J., Di Scala C., Baier C.J., Barrantes F.J. // Chem. Phys. Lipids. 2016. V. 199. P. 52–60. https://doi.org/10.1016/j.chemphyslip.2016.02.009
- Hedger G., Koldsø H., Chavent M., Siebold C., Rohatgi R., Sansom M.S.P. // Structure. 2019. V. 27. P. 549–559.e2. https://doi.org/10.1016/j.str.2018.11.003
- George K.S., Wu S. // Toxicol. Appl. Pharmacol. 2012. V. 259. P. 311–319. https://doi.org/10.1016/j.taap.2012.01.007
- Phillips M.C. // J Biol Chem. 2014. V. 289. P. 24020– 24029. https://doi.org/10.1074/jbc.r114.583658
- Yancey P.G., Bortnick A.E., Kellner-Weibel G., de la LleraMoya M., Phillips M.C., Rothblat G.H. // Arterioscler. Thromb Vasc. Biol. 2003. V. 23. P. 712–719. https://doi.org/10.1161/01.atv.0000057572.97137.dd
- Rosenson R.S., Brewer H.B., Jr., Davidson W.S., Fayad Z.A., Fuster V., Goldstein J., Hellerstein M., Jiang X.C., Phillips M.C., Rader D.J., Remaley A.T., Rothblat G.H., Tall A.R., Yvan-Charvet L. // Circulation. 2012. V. 125. P. 1905–1919. https://doi.org/10.1161/circulationaha.111.066589
- Low H., Hoang A., Sviridov D. // J. Vis. Exp. 2012. V. 61. P. e3810. https://doi.org/10.3791/3810
- Sugkraroek P., Kates M., Leader A., Tanphaichitr N. // Fertil. Steril. 1991. V. 55. P. 820–827.
- Force A., Grizard G., Giraud M.N., Motta C., Sion B., Boucher D. // Int. J. Androl. 2001. V. 24. P. 327–334. https://doi.org/10.1046/j.1365-2605.2001.00309.x
- Folch J., Lees M., Sloane-Stanely G.M. // J. Biol. Chem. 1957. V. 226. P. 497–509.
Қосымша файлдар
