Structural modifications of the platinum(II) isocyanide complexes changing their solid-state luminescence
- Autores: Antonova E.V.1, Sandzhieva M.A.2, Kinzhalov M.A.1
 - 
							Afiliações: 
							
- St. Petersburg State University
 - St. Petersburg National Research University of Information Technologies, Mechanics, and Optics
 
 - Edição: Volume 50, Nº 12 (2024)
 - Páginas: 860–868
 - Seção: Articles
 - URL: https://clinpractice.ru/0132-344X/article/view/676751
 - DOI: https://doi.org/10.31857/S0132344X24120068
 - EDN: https://elibrary.ru/LMCLII
 - ID: 676751
 
Citar
Texto integral
Resumo
Cyclometallated platinum(II) complexes with the general formula [Pt(Рpy)(CNR)2]X (HРpy = 2-phenylpyridine; R = iPr, tBu, Cy; X = BF4, OTf, PF6) containing various alkylisocyanide ligands and counterions are synthesized. The compounds are studied by elemental analysis, ESI HRMS, IR spectroscopy, and 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopy. The structures of [Pt(Рpy)(CNiPr)2]BF4 and [Pt(Рpy)(CNtBu)2]BF4 are determined by XRD (CIF files CCDC nos. 2325595 and 2325527, respectively). The photophysical properties in the solution and in the solid state of the synthesized compounds are studied.
Palavras-chave
Texto integral
Sobre autores
E. Antonova
St. Petersburg State University
														Email: m.kinzhalov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
M. Sandzhieva
St. Petersburg National Research University of Information Technologies, Mechanics, and Optics
														Email: m.kinzhalov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
M. Kinzhalov
St. Petersburg State University
							Autor responsável pela correspondência
							Email: m.kinzhalov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
Bibliografia
- Li X., Xie Y., Li Z. // Chem Asian J. 2021. V. 16. № 19. P. 2817. https://doi.org/10.1002/asia.202100784
 - Lee S., Han W.-S. // Inorg. Chem. Front. 2020. V. 7. № 12. P. 2396. https://doi.org/10.1039/D0QI00001A
 - Zhang Q.-C., Xiao H., Zhang X. et al. // Chem. Soc. Rev. 2019. V. 378. № . P. 121. https://doi.org/10.1016/j.ccr.2018.01.017
 - Katkova S.A., Kozina D.O., Kisel K.S. et al. // Dalton Trans. 2023. V. 52. № 14. P. 4595. https://doi.org/10.1039/d3dt00080j.
 - Zhou X., Lee S., Xu Z. et al. // Chem. Rev. 2015. V. 115. № 15. P. 7944. https://doi.org/10.1021/cr500567r
 - Eremina A.A., Kinzhalov M.A., Katlenok E.A. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2209. https://doi.org/10.1021/acs.inorgchem.9b02833
 - Chan A.Y., Perry I.B., Bissonnette N.B. et al. // Chem. Rev. 2021. V. № . P. https://doi.org/10.1021/acs.chemrev.1c00383
 - Li K., Chen Y., Wang J. et al. // Coord. Chem. Rev. 2021. V. 433. № . P. 213755. https://doi.org/10.1016/j.ccr.2020.213755
 - To W.P., Wan Q.Y., Tong G.S.M. et al. // Trends Chem. 2020. V. 2. № 9. P. 796. https://doi.org/10.1016/j.trechm.2020.06.004
 - Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. V. 9. № . P. 417. https://doi.org/10.1039/D1QI01288F
 - Lu B., Liu S., Yan D. // Chin. Chem. Lett. 2019. V. 30. № 11. P. 1908. https://doi.org/10.1016/j.cclet.2019.09.012
 - Wang W., Zhang Y., Jin W.J. // Coord. Chem. Rev. 2020. V. 404. № . P. https://doi.org/10.1016/j.ccr.2019.213107
 - Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. № . P. https://doi.org/10.1016/j.ccr.2019.213094
 - Yoshida M., Kato M. // Coord. Chem. Rev. 2018. V. 355. № . P. 101. https://doi.org/10.1016/j.ccr.2017.07.016
 - Puttock E.V., Walden M.T., Williams J.A.G. // Coord. Chem. Rev. 2018. V. 367. № . P. 127. https://doi.org/10.1016/j.ccr.2018.04.003
 - Ravotto L., Ceroni P. // Coord. Chem. Rev. 2017. V. 346. № . P. 62. https://doi.org/10.1016/j.ccr.2017.01.006
 - Solomatina A.I., Galenko E.E., Kozina D.O. et al. // Chemistry. 2022. V. 28. № 64. P. e202202207. https://doi.org/10.1002/chem.202202207
 - Sokolova E.V., Kinzhalov M.A., Smirnov A.S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454. https://doi.org/10.1021/acsomega.2c04110
 - Saito D., Ogawa T., Yoshida M. et al. // Angew. Chem. Int. Ed. Engl. 2020. V. 59. № 42. P. 18723. https://doi.org/10.1002/anie.202008383
 - Yoshida M., Kato M. // Coord. Chem. Rev. 2020. V. 408. № . P. https://doi.org/10.1016/j.ccr.2020.213194
 - Chaaban M., Lee S., Vellore Winfred J.S.R. et al. // Small Struct. 2022. V. 3. № 9. P. 2200043. https://doi.org/10.1002/sstr.202200043
 - Ogawa T., Sameera W.M.C., Saito D. et al. // Inorg. Chem. 2018. V. 57. № 22. P. 14086. https://doi.org/10.1021/acs.inorgchem.8b01654.
 - Law A.S., Lee L.C., Lo K.K. et al. // J. Am. Chem.Soc. 2021. V. 143. № 14. P. 5396. https://doi.org/10.1021/jacs.0c13327
 - Po C., Tam A.Y., Wong K.M. et al. // J. Am. Chem. Soc. 2011. V. 133. № 31. P. 12136. https://doi.org/10.1021/ja203920w
 - Cave G.W.V., Fanizzi F.P., Deeth R.J. et al. // Organometallics. 2000. V. 19. № 7. P. 1355. https://doi.org/10.1021/om9910423
 - Liu J., Leung C.H., Chow A.L. et al. // Chem Commun. 2011. V. 47. № 2. P. 719. https://doi.org/10.1039/c0cc03641b
 - Dobrynin M.V., Sokolova E.V., Kinzhalov M.A. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 857. https://doi.org/10.1021/acsapm.0c01190
 - Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
 - Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
 - CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2012.
 - CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2014.
 - CrysAlisPro. Yarnton (Oxfordshire, England): Oxford Diffraction Ltd., 2009.
 - Katkova S.A., Sokolova E.V., Kinzhalov M.A. // Russ. J. Gen. Chem.. 2023. V. 93. № 1. P. 43. https://doi.org/10.1134/S1070363223010073
 - Forniés J., Fuertes S., Larraz C. et al. // Organometallics. 2012. V. 31. № 7. P. 2729. https://doi.org/10.1021/om201036z
 - Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313. https://doi.org/10.1134/s1070363215100175
 - Pawlak T., Niedzielska D., Vícha J. et al. // J. Organometal. Chem. 2014. V. 759. № . P. 58. https://doi.org/10.1016/j.jorganchem.2014.02.016
 - Katkova S.A., Mikherdov A.S., Sokolova E.V. et al. // J. Mol. Struct. 2022. V. 1253. № . P. 132230. https://doi.org/10.1016/j.molstruc.2021.132230
 - Katkova S.A., Eliseev I.I., Mikherdov A.S. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 393. https://doi.org/10.1134/S1070363221030099
 - Martínez-Junquera M., Lara R., Lalinde E. et al. // J. Mater. Chem. C. 2020. V. 8. № 21. P. 7221. https://doi.org/10.1039/D0TC01163K
 - Martinez-Junquera M., Lalinde E., Moreno M.T. // Inorg. Chem. 2022. V. 61. № 28. P. 10898. https://doi.org/10.1021/acs.inorgchem.2c01400
 - Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M. et al. // New J. Chem. 2017. V. 41. № 24. P. 15347. https://doi.org/10.1039/c7nj03110f
 - Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001.
 - Katkova S.A., Luzyanin K.V., Novikov A.S. et al. // New J. Chem. 2021. V. 45. № 6. P. 2948 https://doi.org/10.1039/D0NJ05457G.
 - Martinez-Junquera M., Lalinde E., Moreno M.T. et al. // Dalton Trans. 2021. V. 50. № 13. P. 4539. https://doi.org/10.1039/d1dt00480h
 
Arquivos suplementares
				
			
						
						
					
						
						
									






