Synthesis and Luminescent Properties of the Carbonyl-Isonitrile Re(I) Complex Based on Menthol-Modified Phenanthroline
- 作者: Davydova M.P.1, Agafontsev A.M.2, Yudin V.N.1, Rakhmanova M.I.1, Artem’ev A.V.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
- 期: 卷 51, 编号 7 (2025)
- 页面: 449-455
- 栏目: Articles
- URL: https://clinpractice.ru/0132-344X/article/view/688156
- DOI: https://doi.org/10.31857/S0132344X25070036
- EDN: https://elibrary.ru/KPMXLL
- ID: 688156
如何引用文章
详细
A carbonyl-isonitrile complex of [Re(CO)₃(L)(m-XylylNC)]OTf formulation (m-XylylNC – 2,6-dimethyl-phenyl isocyanide) was synthesized based on the 1,10-phenanthroline ligand (L) containing a menthol fragment (MtO–) in position 2. The Re(I) atom in the cationic part of this complex has a distorted octahedral environment formed by the N,N′-chelate ligand L, one isonitrile ligand, and three CO ligands. The resulting compound exhibits bright green phosphorescence at room temperature in both the solid state and solution, with quantum yields of 15% and 10%, respectively.
全文:

作者简介
M. Davydova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
俄罗斯联邦, Novosibirsk
A. Agafontsev
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
俄罗斯联邦, Novosibirsk
V. Yudin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
俄罗斯联邦, Novosibirsk
M. Rakhmanova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: chemisufarm@yandex.ru
俄罗斯联邦, Novosibirsk
A. Artem’ev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: chemisufarm@yandex.ru
俄罗斯联邦, Novosibirsk
参考
- Kirgan R.A., Sullivan B.P., Rillema D.P. // Photochemistry and photophysics of coordination compounds II / Eds. Balzani V., Campagna S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 45.
- Abramov P.A., Dmitriev A.A., Kholin K.V. et al. // Electrochim. Acta. 2018, V. 270. P. 526. https://doi.org/10.1016/j.electacta.2018.03.111
- Abramov P.A., Brylev K.A., Vorob’ev A.Y. et al. // Polyhedron. 2017. V. 137. P. 231. https://doi.org/10.1016/j.poly.2017.08.046
- Абрамов П.А. // Журн. структур. химии. 2021 V. 62. P. 1513. https://doi.org/10.26902/JSC_id79933 (Abramov P.A. // J. Struct. Chem. 2021. V. 62. P. 1416. https://doi.org/10.1134/S0022476621090109).
- Abramov P.A., Gritsan N.P., Suturina E. A. et al. // Inorg. Chem. 2015. V. 54. P. 6727. https://doi.org/10.1021/acs.inorgchem.5b00407
- Nayeri S., Jamali S., Pavlovskiy V.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4350. https://doi.org/10.1002/ejic.201900617
- Shakirova J.R., Nayeri S., Jamali S. et al. // ChemPlusChem. 2020. V. 85. P. 2518. https://doi.org/10.1002/cplu.202000597
- Kisel K.S., Baigildin V.A., Solomatina A.I. et al. // Molecules. 2023. V. 28. P. 348. https://doi.org/10.3390/molecules28010348
- Kisel K.S., Shakirova J.R., Pavlovskiy V.V. et al. // Inorg. Chem. 2023. V. 62. P. 18625. https://doi.org/10.1021/acs.inorgchem.3c02915
- Kisel K.S., Eskelinen T., Zafar W. et al. // Inorg. Chem. 2018. V. 57. P. 6349. https://doi.org/10.1021/acs.inorgchem.8b00422
- Kalyanasundaram K. // Faraday Trans. 2. 1986. V. 82. P. 2401. https://doi.org/10.1039/F29868202401
- Yu T., Tsang D.P.-K., Au V. K.-M. et al. // Chem. Eur. J. 2013. V. 19. P. 13418. https://doi.org/10.1002/chem.201301841
- Sacksteder L., Lee M., Demas J. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 8230. https://doi.org/10.1021/ja00071a036
- Villegas J.M., Stoyanov S.R., Huang W. et al. // Inorg. Chem. 2005 V. 44. P. 2297. https://doi.org/10.1021/ic048786f
- Favale J.M., Jr., Danilov E.O., Yarnell J E. et al. // Inorg. Chem. 2019 V. 58. P. 8750. https://doi.org/10.1021/acs.inorgchem.9b01155
- Klemens T., Świtlicka A., Szlapa-Kula A. et al. // Organometallics. 2019. V. 38. P. 4206. https://doi.org/10.1021/acs.organomet.9b00517
- Taydakov I.V., Vashchenko A.A., Lyssenko K.A. et al. // ARKIVOC. 2017. V. 2017, P. 205. https://doi.org/10.24820/ark.5550190.p010.130
- Hostachy S., Policar C., Delsuc N. // Coord. Chem. Rev. 2017. V. 351. P. 172. https://doi.org/10.1016/j.ccr.2017.05.004
- Chelushkin P.S., Shakirova J.R., Kritchenkov I.S. et al. // Dalton Trans. 2022 V. 51. P. 1257. https://doi.org/10.1039/D1DT03077A
- Leonidova A., Gasser G. // ACS Chem. Biol. 2014. V.9. P. 2180. https://doi.org/10.1021/cb500528c
- Lee L.C.-C., Leung K.-K., Lo K.K.-W. // Dalton Trans. 2017. V. 46. P. 16357. https://doi.org/10.1039/C7DT03465B
- Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. P. 1938. https://doi.org/10.1021/cr100241u
- Kisel K.S., Samandarsangari M., Sokolov V.V. et al. // Opt. Mater. 2025. V. 159. P. 116589. https://doi.org/10.1016/j.optmat.2024.116589
- Saleh N., Srebro M., Reynaldo T. et al. // Chem. Commun. 2015. V. 51. P. 3754. https://doi.org/10.1039/C5CC00453E
- Gauthier E.S., Abella L., Hellou N. et al. // Angew. Chem. Int. Ed. 2020. V. 59 P. 8394. https://doi.org/10.1002/anie.202002387
- Saleh N., Kundu D., Vanthuyne N. et al. // ChemPlusChem. 2020, Vol. 85, P. 2446. https://doi.org/10.1002/cplu.202000559
- Gauthier E.S., Abella L., Caytan E. et al. // Chem. Eur. J. 2023, Vol. 29, P. e202203477. https://doi.org/10.1002/chem.202203477
- Giuso V., Gourlaouen C., Delporte-Pébay M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 4855. https://doi.org/10.1039/D3CP04300B
- Kundu D., Jelonek D., Del Rio N. et al. // Chem. Asian J. год ? V. n/a. Аrt. e202401735. https://doi.org/10.1002/asia.202401735
- Davydova M.P., Xu T., Agafontsev A.M. et al. // Angew. Chem. Int. Ed. 2025. V. 64. Аrt. e202419788. https://doi.org/10.1002/anie.202419788
- Bruker Apex3 Software Suite: Apex3, SADABS‐2016/2 and SAINT 8.40a. 2017. V. ? Bruker AXS Inc., Madison, WI, USA.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42, P. 339. https://doi.org/10.1107/S0021889808042726
- van der Sluis P., Spek A.L. // Acta Crystallogr. A. 1990. V. 46. P. 194. https://doi.org/10.1107/S0108767389011189
- Ortega J.V., Khin K., van der Veer W.E. et al. // Inorg. Chem. 2000. V. 39. P. 3038. https://doi.org/10.1021/ic0006910
- Aechter B., Knizek J., Nöth H. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 107. https://doi.org/10.1524/ncrs.2005.220.14.107
- King A.P., Marker S.C., Swanda R.V. et al. // Chem. Eur. J. 2019. V. 25. P. 9206. https://doi.org/10.1002/chem.201902223
- Ko C.-C., Ng C.-O., Yiu S.-M. // Organometallics. 2012. V. 31. P. 7074. https://doi.org/10.1021/om300526e
- Marker S.C., King A.P., Granja S. et al. // Inorg. Chem. 2020. V. 59. P. 10285. https://doi.org/10.1021/acs.inorgchem.0c01442
- Тюпина М.Ю., Мирославов А.Е., Сидоренко Г.В. и др. // Журн. общ. химии. 2022. V. 92. P. 110. https://doi.org/10.31857/S0044460X22010127 (Tyupina M.Y., Miroslavov A.E., Sidorenko G.V. et al. // Russ. J. Gen. Chem. 2022, V. 92. P. 69. https://doi.org/10.1134/S1070363222010108).
补充文件
