Математические мыслительные средства в истории математики (на материале теории положительных операторов)

Обложка
  • Авторы: Богатов Е.М.1,2, Боровских А.В.3,4
  • Учреждения:
    1. Филиал Национального исследовательского технологического университета «МИСИС» в г. Губкине
    2. Старооскольский технологический институт им. А. А. Угарова (филиал Национального исследовательского технологического университета «МИСИС»)
    3. Московский государственный университет имени М. В. Ломоносова
    4. Научно-образовательный математический центр Северо-Осетинского государственного университета им. К. Л. Хетагурова
  • Выпуск: Том 46, № 2 (2025)
  • Страницы: 235-251
  • Раздел: Из истории естествознания
  • URL: https://clinpractice.ru/0205-9606/article/view/686656
  • DOI: https://doi.org/10.31857/S0205960625020021
  • EDN: https://elibrary.ru/HVSQBA
  • ID: 686656

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе намечается не вполне традиционный подход к изучению истории математики, который связан с выделением систем математических мыслительных средств (знаковых, понятийных, идеальных), позволяющих представлять различные типы отношений, характерные для конкретной ветви математики, и оперировать с ними. Основная задача истории математики при таком подходе – это анализ появления, эволюции и трансформации систем ее мыслительных средств как с точки зрения расширения горизонтов познания и выхода на новые уровни абстракции, так и с позиций пополнения арсенала методов использования таких средств. Для демонстрации результатов применения такого подхода авторами был рассмотрен один из разделов функционального анализа – теория положительных операторов – в контексте истории его генезиса и начального развития в период с середины 1900-х по 1960-е гг. На этом пути были выявлены ключевые мыслительные средства, относящиеся к конечномерному периоду развития указанной теории (положительные матрицы, осцилляционные матрицы и др.) и выражающие отношения между ее значимыми математическими сущностями (теорема Перрона). Кроме того, были сделаны первые шаги по пути осмысления дальнейшей трансформации указанных средств (понятие конуса, определение положительных функционалов и операторов) и математических отношений (теоремы Ентча и Урысона в интегральном и абстрактном виде и др.). Обсуждаются результаты, полученные О. Келлогом, Ш. Штурмом, М. Г. Крейном, Ф. Р. Гантмахером, М. А. Рутманом, М. А. Красносельским, Л. А. Ладыженским и другими математиками.

Полный текст

Доступ закрыт

Об авторах

Егор Михайлович Богатов

Филиал Национального исследовательского технологического университета «МИСИС» в г. Губкине; Старооскольский технологический институт им. А. А. Угарова (филиал Национального исследовательского технологического университета «МИСИС»)

Автор, ответственный за переписку.
Email: embogatov@inbox.ru
Россия, ул. Комсомольская, 16, Губкин, Белгородская обл., 309186; мкр. Макаренко, 42, Старый Оскол, Белгородская обл., 309516

Алексей Владиславович Боровских

Московский государственный университет имени М. В. Ломоносова; Научно-образовательный математический центр Северо-Осетинского государственного университета им. К. Л. Хетагурова

Email: bor.bor@mail.ru
Россия, Ленинские горы, 1, Москва, 119991; ул. Церетели, 16, Владикавказ, Республика Северная Осетия-Алания, 362025

Список литературы

  1. Ascoli, G. (1932) Sugli spazi lineari metrici e le loro varietà lineari, Annali di matematica pura ed applicata, vol. 10, pp. 33–81.
  2. Bogatov, E. M. (2019) O razvitii kachestvennykh metodov resheniia nelineinykh uravnenii i nekotorykh posledstviiakh [On the Development of Qualitative Methods for Solving Nonlinear Equations and Some Consequences], Izvestiia vysshikh uchebnykh zavedenii. Prikladnaia nelineinaia dinamika, vol. 27, no. 1, pp. 96–114.
  3. Bogatov, E. M. (2020) Ob istorii polozhitel’nykh operatorov (1900-e – 1960-e gg.) i vklade M. A. Krasnosel’skogo [On the History of Positive Operators (1900s – 1960s) and the Contribution of M. A. Krasnoselskii], Nauchnye vedomosti BelGU, seriia: Prikladnaia matematika. Fizika, vol. 52, no. 2, pp. 105–127.
  4. Bogatov, E. M. (2024) Istoriia otechestvennykh shkol nelineinogo funktsional’nogo analiza vtoroi treti XX veka [The History of Russian Schools of Nonlinear Functional Analysis in the Second Third of the 20th Century], Continuum. Matematika. Informatika. Obrazovanie, no. 3, pp. 102–118.
  5. Borovskikh, A. V. (2003) Usloviia znakoreguliarnosti razryvnykh kraevykh zadach [Sign Regularity Conditions for Discontinuous Boundary-Value Problems], Matematicheskie zametki, vol. 74, iss. 5, pp. 607–618.
  6. Borovskikh, A. V. (2022) O poniatii matematicheskoi gramotnosti [On the Concept of Mathematical Literacy], Pedagogika, vol. 86, no. 3, pp. 33–45.
  7. Borovskikh, A. V. (2022) O soderzhanii matematicheskogo obrazovaniia. Matematika dlia nematematikov [On the Content of Mathematical Education. Mathematics for Non-Mathematicians], Continuum. Matematika. Informatika. Obrazovanie, no. 4, pp. 51–65.
  8. Borovskikh, A. V. (2024) O soderzhanii shkol’nogo matematicheskogo obrazovaniia. Ot soderzhimogo k soderzhaniiu: matematika kak sovokupnost’ myslitel’nykh sredstv [On the Content of School Mathematics Education. From Contents to Content. Mathematics as a System of Mental Means], Vestnik Moskovskogo universiteta, seriia 20: Pedagogicheskoe obrazovanie, vol. 22, no. 2, pp. 61–82.
  9. Borovskikh, A. V., and Pokornyi, Iu. V. (1994) Sistemy Chebysheva – Khaara v teorii razryvnykh iader Kelloga [Chebyshev – Haar Systems in the Theory of Discontinuous Kellogg Kernels], Uspekhi matematicheskikh nauk, vol. 49, no. 3, pp. 1–42.
  10. Demidovich, B. P. (1997) Sbornik zadach i uprazhnenii po matematicheskomu analizu: uchebnoe posobie. 13-e izd. [Collection of Problems and Exercises in Mathematical Analysis: A Textbook. 13th ed.]. Moskva: Izdatel’stvo Moskovskogo universiteta.
  11. Derr, V. Ia. (1987) K obobshchennoi zadache Valle-Pussena [On the Generalized de la Vallée Poussin Problem], Differentsial’nye uravneniia, vol. 23, no. 11, pp. 1861–1872.
  12. Gantmakher, F. R., and Krein, M. G. (1950) Ostsilliatsionnye matritsy i iadra i malye kolebaniia mekhanicheskikh sistem. 2-e izd. [Oscillatory Matrices and Kernels and Small Oscillations of Mechanical Systems. 2nd ed.]. Moskva and Leningrad: Gostekhteoretizdat.
  13. Gantmakher, F. R., and Krein, M. G. (1935) Ob odnom spetsial’nom klasse determinantov v sviazi s integral’nymi iadrami Kellog’a. 2-e izd. [On a Special Class of Determinants in Connection with Kellog’s Integral Kernels], Matematicheskii sbornik, vol. 42, iss. 4, pp. 501–508.
  14. Gantmakher, F. R., and Krein, M. G. (1941) Ostsilliatsionnye matritsy i iadra i malye kolebaniia mekhanicheskikh sistem [Oscillatory Matrices and Kernels and Small Oscillations of Mechanical Systems. 2nd ed.]. Moskva and Leningrad: Gostekhteoretizdat.
  15. Gilʼbert, D. (Hilbert, D.) (1998) Izbrannye trudy [Selected Works]. Moskva: Faktorial, vol. 2: Analiz. Fizika. Problemy Gil’berta [Analysis. Physics. Hilbert’s Problems].
  16. Jentzsch, R. (1912) Über Integralgleichungen mit positivem Kern, Journal für die reine und angewandte Mathematik, vol. 41, pp. 235–244.
  17. Keller, G. B. (1974) Nekotorye pozitonnye zadachi, vydvigaemye nelineinoi teoriei generatsii tepla [Some Positivity Problems Raised by the Nonlinear Theory of Heat Generation], in: Keller, Dz. B., and Antman, S. (Keller, J. B., and Antman, S.) (eds.) Teoriia vetvleniia i nelineinye zadachi na sobstvennye znacheniia [Bifurcation Theory and Nonlinear Eigenvalue Problems]. Moskva: Mir, pp. 129–151.
  18. Kellogg, O. D. (1916) The Oscillation of Functions of an Orthogonal Set, American Journal of Mathematics, vol. 38, no. 1, pp. 1–5.
  19. Kellogg, O. D. (1918) Interpolation Properties of Orthogonal Sets of Solutions of Differential Equations, American Journal of Mathematics, vol. 40, no. 3, pp. 225–234.
  20. Kellogg, O. D. (1918) Orthogonal Function Sets Arising from Integral Equations, American Journal of Mathematics, vol. 40, no. 2, pp. 145–154.
  21. Krasnosel’skii, M. A. (1962) Polozhitel’nye resheniia operatornykh uravnenii [Positive Solutions of Operator Equations]. Moskva: Fizmatgiz.
  22. Krasnosel’skii, M. A., and Ladyzhenskii, L. A. (1954) Struktura spektra polozhitel’nykh neodnorodnykh operatorov [The Structure of the Spectrum of Positive Nonhomogeneous Operators], Trudy Moskovskogo matematicheskogo obshchestva, iss. 3, pp. 321–346.
  23. Krasnosel’skii, M. A., and Ladyzhenskii, L. A. (1959) Ob ob”eme poniatiia u0-vognutogo operatora [The Scope of the Concept of a u0-concave Operator], Izvestiia vysshikh uchebnykh zavedenii. Matematika, no. 5, pp. 112–121.
  24. Krasovskii, Iu. P. (1960) K teorii ustanovivshikhsia voln nemaloi amplitudy [On the Theory of Steady Waves of Considerable Amplitude], Doklady AN SSSR, vol. 130, iss. 6, pp. 1237–1240.
  25. Krein, M. G. (1937) Pro pozytyvni adytyvni funktsionaly v liniinykh normovanykh prostorakh [On Positive Additive Functionals in Linear Normed Spaces], Soobshcheniia Khar’kovskogo matematicheskogo obshchestva, vol. 14, pp. 227–237.
  26. Krein, M. G. (1938) Obshchie teoremy o pozitivnykh funktsionalakh [General Theorems on Positive Functionals], in: Akhiezer, N. I., and Krein, M. G. O nekotorykh voprosakh teorii momentov [On Some Issues of the Theory of Moments]. Khar’kov: Gosnauchtekhizdat Ukrainy, pp. 121–150.
  27. Krein, M. G. (1951) Idei P. L. Chebysheva i A. A. Markova v teorii predel’nykh velichin integralov i ikh dal’neishee razvitie [Ideas of P. L. Chebyshev and A. A. Markov in the Theory of Limit Values of Integrals and Their Further Development], Uspekhi matematicheskikh nauk, vol. 6, no. 4, pp. 3–120.
  28. Krein, M. G., and Rutman, M. A. (1948) Lineinye operatory, ostavliaiushchie invariantnym konus v prostranstve Banakha [Linear Operators that Leave a Cone Invariant in a Banach Space], Uspekhi matematicheskikh nauk, vol. 3, iss. 1, no. 23, pp. 3–95.
  29. Markov, A. A. (1908) Rasprostranenie predel’nykh teorem ischisleniia veroiatnostei na summu velichin, sviazannykh v tsep’ [Extension of the Limit Theorems of Probability Theory to a Sum of Quantities Connected in a Chain], Zapiski Akademii nauk, seriia 8: Po Fiziko-matematicheskomu otdeleniiu, vol. 22, no. 9, pp. 1–29.
  30. Mazur, S. (1933) Über konvexe Mengen in linearen normierten Räumen, Studia mathematica, vol. 4, pp. 70–84.
  31. Perron, O. (1907) Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Mathematische Annalen, vol. 64, pp. 1–76.
  32. Pokornyi, Iu. V. (1978) O neklassicheskoi zadache Valle-Pussena [A Nonclassical de la Vallée Poussin Problem], Differentsial’nye uravneniia, vol. 14, no. 6, pp. 1018–1027.
  33. Pokornyi, Iu. V., and Lazarev, K. P. (1987) Nekotorye ostsilliatsionnye teoremy dlia mnogotochechnykh zadach [Some Oscillation Theorems for Multipoint Problems], Differentsial’nye uravneniia, vol. 23, no. 4, pp. 658–670.
  34. Riesz, F. (1930) Sur la décomposition des opérations fonctionnelles linéaires, Atti del Congresso internazionale dei matematici, Bologna, 3–10 settembre 1928. Bologna: Nicola Zanichelli, vol. 3, pp. 143–148.
  35. Rutman, M. A. (1938) Ob odnom spetsial’nom klasse vpolne nepreryvnykh operatorov [On a Special Class of Completely Continuous Operators], Doklady AN SSSR, vol. 18, no. 9, pp. 625–627.
  36. Rutman, M. A. (1940) Sur les opérateurs totalement continus linéaires laissant invariant un certain cône, Matematicheskii sbornik, vol. 8 (50), no. 1, pp. 77–96.
  37. Schur, I. (1909) Zur Theorie der linearen homogenen Integralgleichungen, Mathematische Annalen, vol. 67, no. 3, pp. 306–339.
  38. Sturm, С. (1836) Sur une class d’equations a differences partielle, Journal de mathématiques pures et appliquées, vol. 1, pp. 373–444.
  39. Uryson, P. S. (1923) Ob odnom tipe nelineinykh integral’nykh uravnenii [On One Type of Nonlinear Integral Equations], Matematicheskii sbornik, vol. 31, no. 2, pp. 236–255.
  40. Vileitner, G. (Wieleitner, H.) (1966) Istoriia matematiki ot Dekarta do serediny XIX stoletiia [History of Mathematics from Descartes to the Mid-19th Century]. Moskva: Nauka.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Геометрический смысл условия Рутмана – существование пересечения вогнутой функции с наклонной прямой

Скачать (34KB)

© Российская академия наук, 2025