Magnetic nanoparticles as a platform for delivery of the photosensitizer methylene blue to HCT116 tumor cells
- 作者: Nguyen M.T.1, Markova A.A.1, Batchaeva B.B.1, Gorobets M.G.1, Toroptseva A.V.1, Motyakin M.V.1, Abdullina M.I.1, Bychkova A.V.1
 - 
							隶属关系: 
							
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
 
 - 期: 卷 44, 编号 3 (2025)
 - 页面: 106-110
 - 栏目: Chemical physics of nanomaterials
 - URL: https://clinpractice.ru/0207-401X/article/view/679474
 - DOI: https://doi.org/10.31857/S0207401X25030119
 - ID: 679474
 
如何引用文章
详细
Hybrid nanosystems based on magnetic iron oxide nanoparticles (IONPs) and human serum albumin (HSA), containing methylene blue (MB) as a model photosensitizer, have been synthesized. The resulting HSA@IONP nanosystems were characterized for size and composition using UV/visible spectrophotometry (particularly, using the Bradford method), dynamic light scattering, and electron magnetic resonance. A study of the dark and photoinduced cytotoxicity of MB, IONP, HSA@IONP, MB–IONP, MB–(HSA@IONP) on of human colon adenocarcinoma HCT116 cells was carried out. Under the experimental conditions, the difference between the dark and light-induced cytotoxicity of nanosystems on cells was significantly enhanced when the photosensitizer was immobilized on the surface of the carrier particles compared to free photosensitizer in equivalent concentrations.
全文:
作者简介
M. Nguyen
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
A. Markova
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
B. Batchaeva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
M. Gorobets
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
A. Toroptseva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
M. Motyakin
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
M. Abdullina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
A. Bychkova
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: anna.v.bychkova@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
参考
- Q. Chen, Z. Liu. Adv. Mater. 28, 10557–10566 (2016). https://doi.org/10.1002/adma.201600038
 - L.L. Israel, A. Galstyan, E. Holler et al. J. Control. Release. 320, 45 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
 - A.S. Chubarov. Magnetochemistry 8, 13 (18 pages) (2022). https://doi.org/10.3390/magnetochemistry8020013
 - N.G. Berdnikova, A.E. Dontsov, M.V. Erokhina et al. Russ. J. Phys. Chem. B. 13, 942 (2019). https://doi.org/10.1134/S1990793119060150
 - N.V. Menshutina, A.A. Uvarova, M.S. Mochalova et al. Russ. J. Phys. Chem. B. 17, № 7, 1507 (2023). https://doi.org/10.1134/S1990793123070163
 - M.A. Kolyvanova, M.A. Klimovich, O.V. Dement’eva et al. Russ. J. Phys. Chem. B. 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
 - A.V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov et al. Russ. J. Phys. Chem. B 17, 1398 (2023). https://doi.org/10.1134/S1990793123060192
 - J.P. Tardivo, A. Del Giglio, C.S. de Oliveira et al. Photodiagnosis Photodyn. Ther. 2, 175 (2005). https://doi.org/10.1016/S1572-1000(05)00097-9
 - Y. Zhang, Z. Ye, R. He et al. Colloids Surfaces B Biointerfaces 224, 113201 (2023). https://doi.org/10.1016/j.colsurfb.2023.113201
 - V.H. Toledo, T.M. Yoshimura, S.T. Pereira et al. J. Photochem. Photobiol. B Biol. 209, 111956 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111956
 - J.A. Rodrigues, J.H. Correia. Int. J. Mol. Sci. 24, 12204 (2023). https://doi.org/10.3390/ijms241512204
 - I.D. Burtsev, A.E. Egorov, A.A. Kostyukov et al. Russ. J. Phys. Chem. B. 16, 109 (2022). https://doi.org/10.1134/S1990793122010195
 - M.A. Klimovich, N.N Sazhina, A.S. Radchenko et al. Russ. J. Phys. Chem. B. 15, 93 (2021). https://doi.org/10.1134/S1990793121010206
 - A.V. Bychkova, M.N. Yakunina, M.V. Lopukhova et al. Pharmaceutics. 14, 2771 (2022). https://doi.org/10.3390/pharmaceutics14122771
 - M.T. Nguyen, E.V. Guseva, A.N. Ataeva et al. Int. J. Mol. Sci. 24, 7995 (2023). https://doi.org/10.3390/ijms24097995
 - F.I. Dalidchik, O.A. Lopatina, S.A. Kovalevsky et al. Russ. J. Phys. Chem. B. 18, 266 (2024). https://doi.org/10.1134/S1990793124010238
 - Y.-J.Hu, W. Li, Y. Liu et al. J. Pharm. Biomed. Anal. 39, 740 (2005). https://doi.org/10.1016/j.jpba.2005.04.009
 
补充文件
				
			
						
						
						
						
					



