Thermodynamic assessment of conversion modes of acid gases/methane mixture for syngas production
- Authors: Tsvetkov M.V.1, Zaichenko A.Y.1, Podlesniy D.N.1, Tsvetkova Y.Y.1, Salganskaya M.V.1, Kislov V.M.1, Salgansky E.A.1
-
Affiliations:
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Issue: Vol 44, No 4 (2025)
- Pages: 11-18
- Section: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://clinpractice.ru/0207-401X/article/view/682722
- DOI: https://doi.org/10.31857/S0207401X25040027
- ID: 682722
Cite item
Abstract
A thermodynamic assessment of the modes of non-catalytic conversion of acid gases and methane to produce syngas was carried out. The air and steam-air conversion modes of a mixture of hydrogen sulfide, carbon dioxide and methane were studied. Model compositions of gases with different contents of hydrogen sulfide (10, 20 and 30 vol.%) and methane (depending on the stoichiometric fuel excess coefficient) were considered. It has been shown that high temperature leads up the conversion of reagents and the syngas formation. With an increase in the amount of methane, the yield of hydrogen increased over the entire temperature range under consideration (1273–1873 K), but conversion rate of hydrogen sulfide decreased significantly. Increasing the amount of hydrogen sulfide in the initial mixture reduces the yield of synthesis gas. Adding water vapor in amounts up to 5 vol.% leads to an increase in the syngas yield and the [H2]/[CO] ratio. The maximum ratio H2/CO = 2.1 was achieved during air conversion of a mixture with 10 vol.% hydrogen sulfide with the same amount of CO2 with a stoichiometric fuel excess ratio of 10 and T = 1873 K.
Full Text

About the authors
M. V. Tsvetkov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
A. Yu. Zaichenko
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
D. N. Podlesniy
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
Yu. Yu. Tsvetkova
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
M. V. Salganskaya
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
V. M. Kislov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
E. A. Salgansky
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka
References
- Y.H. Chan, S.S.M. Lock, M.K. Wong et al. Environ. Pollut. 314, 120219 (2022). https://doi.org/10.1016/j.envpol.2022.120219
- Y.H. Chan, A.C.M. Loy, K.W. Cheah et al. Chem. Eng. J. 458, 141398 (2023). https://doi.org/10.1016/j.cej.2023.141398
- A. Raj, S. Ibrahim, A. Jagannath. Prog. Energy Combust. Sci. 80, 100848 (2020). https://doi.org/10.1016/j.pecs.2020.100848
- I.A. Abdalsamed, I.A. Amar, A.A. Al-abbasi et al. Scientific J. Faculty Sci.-Sirte Univ. 3 (1), 158 (2023). https://doi.org/10.37375/sjfssu.v3i1.74
- A.G. Georgiadis, N.D. Charisiou, M.A. Goula. Catalysts. 10 (5), 521 (2020). https://doi.org/10.3390/catal10050521
- A. K. Gupta, S. Ibrahim, A. Al Shoaibi. Prog. Energy Combust. Sci. 54, 65 (2016). https://doi.org/10.1016/j.pecs.2015.11.001
- A.N. Zagoruiko, V.V. Shinkarev, S.V. Vanag, G.A. Bukhtiyarova. Catal. Ind. S1, 52 (2010). https://doi.org/10.1134/S2070050410040082
- S. Guo, F. Zhou, J. Shan et al. Fuel. 367, 131242 (2024). https://doi.org/10.1016/j.fuel.2024.131242
- A.Z. Ardeh, S. Fathi, F.Z. A. Ashtiani. Fouladitajar Sep. Purif. Technol. 338, 126173 (2024). https://doi.org/10.1016/j.seppur.2023.126173
- S.M. Ali, I.I. Alkhatib, A. AlHajaj, L.F. Vega. J. Clean. Prod. 428, 139475 (2023). https://doi.org/10.1016/j.jclepro.2023.139475
- E. Spatolisano, G. De Guido, L.A. Pellegrini et al. J. Clean. Prod. 330, 129889 (2022). https://doi.org/10.1016/j.jclepro.2021.129889
- I.V. Sedov, V.S. Arutyunov, M.V. Tsvetkov et al. Eurasian Chem.-Technol. J. 24 (2), 157 (2022). https://doi.org/10.18321/ectj1328
- I.A. Makaryan, I.V. Sedov. Russ. J. Appl. Chem. 96 (6), 619 (2023). https://doi.org/10.1134/S1070427223060010
- A.M. El-Melih, S. Ibrahim, A.K. Gupta, A. Al Shoaibi. Appl. Energy. 164 64 (2016). https://doi.org/10.1016/j.apenergy.2015.11.025
- S. Scognamiglio, B. Ciccone, G. Ruoppolo, G. Landi. Chem. Eng. Trans. 109, 277 (2024). https://doi.org/10.3303/CET24109047
- J.M. Colom-Díaz, M. Lecinena, A. Peláez et al. Fuel. 262, 116484 (2020). https://doi.org/10.1016/j.fuel.2019.116484
- A. Dell’Angelo, E.M. Andoglu, S. Kaytakoglu, F. Manenti. Chem. Prod. Process Model. 18 (1), 117 (2023). https://doi.org/10.1515/cppm-2021-0044
- V.A. Savelieva, A.M. Starik, N.S. Titova, O.N. Favorskii. Combust. Explos. Shock Waves. 54, 136 (2018). https://doi.org/10.1134/S0010508218020028
- A.M. El-Melih, A.Al Shoaibi, A.K. Gupta. Appl. Energy. 178, 609 (2016). https://doi.org/10.1016/j.apenergy.2016.06.053
- M. Kheirinik, N. Rahmanian. Advances Natural Gas: Formation, Processing, and Applications. Volume 7: Natural Gas Products and Uses, 263 (2024). https://doi.org/10.1016/B978-0-443-19227-2.00014-9
- F. Abdulrahman, Q. Wang, F. Angikath, S.M. Sarathy. Int. J. Hydrog. Energy. 67, 750 (2024). https://doi.org/10.1016/j.ijhydene.2024.04.213
- A.M. El-Melih, L. Iovine, A.Al Shoaibi, A.K. Gupta. Int. J. Hydrog. Energy. 42 (8), 4764 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.096
- A. Stagni, S. Arunthanayothin, L.P. Maffei et al. Chem. Eng. J. 446, 136723 (2022). https://doi.org/10.1016/j.cej.2022.136723
- E. Spatolisano, G.De Guido, L.A. Pellegrini et al. Int. J. Hydrog. Energy. 47 (35), 15612 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.090
- V. Palma, V. Vaiano, D. Barba et al. Int. J. Hydrog. Energy. 40 (1), 106 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.022
- D. Bongartz, A.F. Ghoniem. Combust. Flame. 162 (3), 544 (2015). https://doi.org/10.1016/j.combustflame.2014.08.019
- Y. Li, X. Yu, H. Li et al. Appl. Energy. 190, 824 (2017). https://doi.org/10.1016/j.apenergy.2016.12.150
- S. Ibrahim, A. Raj. Ind. Eng. Chem. Res. 55 (24), 6743 (2016). https://doi.org/10.1021/acs.iecr.6b01176
- K.R. G.Burra, G. Bassioni, A.K. Gupta. Int. J. Hydrog. Energy. 43 (51), 22852 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.164
- H. Cruchade, I. C. Medeiros-Costa, N. Nesterenko et al. ACS Catalysis. 12 (23), 14533 (2022). https://pubs.acs.org/doi/10.1021/acscatal.2c03747
- R.B. Slimane, F.S. Lau, M. Khinkis et al. Int. J. Hydrog. Energy. 29 (14), 1471 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.004
- J.P. Bingue, A.V. Saveliev, A.A. Fridman, L.A. Kennedy. Int. J. Hydrog. Energy. 27 (6), 643 (2002). https://doi.org/10.1016/S0360-3199(01)00174-4
- J.P. Bingue, A.V. Saveliev, A.A. Fridman, L.A. Kennedy. Exp. Therm. Fluid Sci. 26 (2-4), 409 (2002). https://doi.org/10.1016/S0894-1777(02)00151-6
- M. Toledo, A. Arriagada, N. Ripoll, E.A. Salgansky, M.A. Mujeebu. Renew. Sustain. Energy Rev. 177, 113213 (2023). https://doi.org/10.1016/j.rser.2023.113213
- S.O. Dorofeenko, E.V. Polianczyk. Fuel. 291, 120255 (2021). https://doi.org/10.1016/j.fuel.2021.120255
- I.A. Makaryan, E.A. Salgansky, V.S. Arutyunov, I.V. Sedov. Energies. 16 (6), 2916 (2023). https://doi.org/10.3390/en16062916
- V.M. Kislov, Yu.Yu. Tsvetkova, M.V. Tsvetkov et al. Combust., Explos. Shock Waves. 59 (2),83 (2023). https://doi.org/10.15372/FGV20230210
- V.M. Kislov, M.V. Tsvetkov, A.Y. Zaichenko et al. Russ. J. Phys. Chem. B. 17, 947 (2023). https://doi.org/10.1134/S1990793123040255
- E.A. Salgansky, M.V. Tsvetkov, Y.Y. Tsvetkova et al. Russ. J. Phys. Chem. B. 16, 1085 (2022). https://doi.org/10.1134/S1990793122060100
- E. Polianczyk, G. Tarasov, A. Zaichenko. E3S Web Conf. 474, 01013 (2024). https://doi.org/10.1051/e3sconf/202447401013
- Y.Y. Tsvetkova, V.M. Kislov, E.N. Pilipenko, M.V. Salganskaya, M.V. Tsvetkov. Russ. J. Phys. Chem. B. 18 (4), 980 (2024). https://doi.org/10.1134/S199079312470043X
- A. Arriagada, R. Mena, N. Ripoll et al. Chem. Eng. J. 495, 153011 (2024). https://doi.org/10.1016/j.cej.2024.153011
- V.M. Kislov, S.V. Glazov, E.A. Salgansky, Yu.Yu. Kolesnikova, M.V. Salganskaya. Combust. Explos. Shock Waves. 52, 320 (2016). https://doi.org/10.1134/S0010508216030102
- M.V. Salganskaya, S.V. Glazov, E.A. Salganskii et al. Russ. J. Phys. Chem. B. 2, 71 (2008). https://doi.org/10.1134/S1990793108010119
- E. A. Salgansky, M. V. Tsvetkov, A. Y. Zaichenko, D. N. Podlesniy, I.V. Sedov. Russ. J. Phys. Chem. B. 15, 969 (2021). https://doi.org/10.1134/S1990793121060087
- V.I. Savchenko, Y.S. Zimin, E. Busillo et al. Pet. Chem. 62, 515 (2022). https://doi.org/10.1134/S0965544122050048
- F. Tollini, M. Sponchioni, V. Calemma, D. Moscatelli. Energy Fuels, 37 (15), 11197 (2023). https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c01237
- C.W. Wang, J. Li, L.H. Zhang et al. Fuel. 362, 130916 (2024). https://doi.org/10.1016/j.fuel.2024.130916
- B.G. Trusov. Proc. 14th Intern. Conf. Chemical Thermodynamics (NIIKh SPbGU, St. Petersburg). 483 (2002).
- S.D. Arsentev, A.H. Davtyan, Z.H. Manukyan et al. Russ. J. Phys. Chem. B 18, 125 (2024). https://doi.org/10.1134/S1990793124010020
Supplementary files
