A comparative analysis of simulation of collision induced dissociation on two different potential energy surfaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the results of quasiclassical trajectory simulation of dissociation of CsBr molecules in collisions with Xe atoms (at collision energies ranging from 3 to 12 eV) on two diabatic potential energy surfaces differing in the parameters of the potential well and of the repulsive wall for the pairwise interaction potential between the xenon atom and the bromide anion. The dynamical characteristics of both the dissociation channels (of the formation of the atomic ions and of that of the ion complex XeCs+) are practically independent of the interaction potential between Xe and Br.

About the authors

V. M. Azriel

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rusin@chph.ras.ru
Russian Federation, Moscow

V. M. Akimov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rusin@chph.ras.ru
Russian Federation, Moscow

E. V. Ermolova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rusin@chph.ras.ru
Russian Federation, Moscow

D. B. Kabanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rusin@chph.ras.ru
Russian Federation, Moscow

L. I. Kolesnikova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rusin@chph.ras.ru
Russian Federation, Moscow

L. Yu. Rusin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: rusin@chph.ras.ru
Russian Federation, Moscow

M. B. Sevryuk

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rusin@chph.ras.ru
Russian Federation, Moscow

References

  1. Encyclopedia of Low Temperature Plasma, Introductory Vol. I (Sections I–III), Ed. by V. E. Fortov (Nauka, Moscow, 2000) [in Russian].
  2. B.A. Knyazev. Low Temperature Plasma and Gas Discharge (Novosib. Gos. Univ., Novosibirsk, 2003) [in Russian].
  3. L.Yu. Rusin, M.B. Sevryuk, V.M. Akimov, and D.B. Kabanov. TsITiS Report No. AAAA-B16-216100670036-8 (Tal’rose Inst. Energy Probl. Chem. Phys. RAS, Moscow, 2016).
  4. P. Bayat, D. Gatineau, D. Lesage, A. Martinez, and R.B. Cole. J. Mass Spectrometry 57, e4879 (2022). https://doi.org/10.1002/jms.4879
  5. G. Yassaghi, Z. Kukačka, J. Fiala et al. Anal. Chem. 94, 9993 (2022). https://doi.org/10.1021/acs.analchem.1c05476
  6. F. Xu, W. Wang, L. Ding, X. Fang, and Ch.-F. Ding. Anal. Chem. 94, 17827 (2022). https://doi.org/10.1021/acs.analchem.2c03524
  7. J. Cho, Yu. Tao, Yu. Georgievskii et al., Proc. Combustion Inst. 39, 601 (2023). https://doi.org/10.1016/j.proci.2022.07.155
  8. K. Parker, N.E. Bollis, and V. Ryzhov. Mass Spectrometry Rev. 43, 47 (2024). https://doi.org/10.1002/mas.21819
  9. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 16, 912 (2022). https://doi.org/10.1134/S1990793122050232
  10. Y. Chengxun, L. Zhijian, V.L. Bychkov, D.V. Bychkov, M.G. Golubkov, T.A. Maslov, I.D. Rodionov, I.P. Rodionova, I.G. Stepanov, S.Ya. Umanskii, and G.V. Golubkov. Russ. J. Phys. Chem. B 16, 955 (2022). https://doi.org/10.1134/S1990793122050189
  11. S.N. Kozlov and B.E. Zhestkov. Russ. J. Phys. Chem. B 16, 1030 (2022). https://doi.org/10.1134/S1990793122060069
  12. V.M. Azriel’, V.M. Akimov, E.V. Ermolova, D.B. Kabanov, L.I. Kolesnikova, L.Yu. Rusin, and M.B. Sevryuk. Russ. J. Phys. Chem. B 16, 1057 (2022). https://doi.org/10.1134/S1990793122060148
  13. M. Mirahmadi and J. Pérez-Ríos. Intern. Rev. Phys. Chem. 41, 233 (2023). https://doi.org/10.1080/0144235X.2023.2237300
  14. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak. Russ. J. Phys. Chem. B 17, 986 (2023). https://doi.org/10.1134/S1990793123040280
  15. V.M. Azriel’, V.M. Akimov, E.V. Ermolova, D.B. Kabanov, L.I. Kolesnikova, L.Yu. Rusin, and M.B. Sevryuk. Russ. J. Phys. Chem. B 17, 1270 (2023). https://doi.org/10.1134/S1990793123060155
  16. J.J. Ewing, R. Milstein, and R. S. Berry. J. Chem. Phys. 54, 1752 (1971). https://doi.org/10.1063/1.1675082
  17. E.K. Parks, M. Inoue, and S. Wexler, J. Chem. Phys. 76, 1357 (1982). https://doi.org/10.1063/1.443129
  18. E.K. Parks, L.G. Pobo, and S. Wexler. J. Chem. Phys. 80, 5003 (1984). https://doi.org/10.1063/1.446523
  19. A.S. Davydov. Quantum Mechanics (Pergamon Press, Oxford, 1976).
  20. A. Messiah. Quantum Mechanics, Vol. 2 (North-Holland, Amsterdam, 1962).
  21. V.M. Azriel’. Doctoral Dissertation in Physics and Mathematics (Inst. Energy Probl. Chem. Phys. RAS, Moscow, 2008).
  22. V.M. Akimov, V.M. Azriel’, E.V. Ermolova, et al., Phys. Chem. Chem. Phys. 23, 7783 (2021). https://doi.org/10.1039/d0cp04183a
  23. S.I. Kabanikhin, J. Inverse Ill-posed Probl. 16, 317 (2008). https://doi.org/10.1515/JIIP.2008.019
  24. S.I. Kabanikhin. Inverse and Ill-posed Problems: Theory and Applications (De Gruyter, Berlin, 2012). https://doi.org/10.1515/9783110224016
  25. A.N. Tikhonov and V.Ya. Arsenin. Solutions of Ill-posed Problems (Winston, Washington, D.C. and Wiley, New York, 1977).
  26. K. Chadan and P. C. Sabatier. Inverse Problems in Quantum Scattering Theory (Springer, New York, 1989). https://doi.org/10.1007/978-3-642-83317-5
  27. V.M. Akimov, A.A. Zembekov, L.A. Lomakin, et al., Dokl. Akad. Nauk SSSR 253, 633 (1980).
  28. A.A. Zembekov, A.I. Maergoǐz, E.E. Nikitin, and L.Yu. Rusin, Teoret. Eksper. Khimiya 17, 579 (1981).
  29. A.I. Maergoǐz, E.E. Nikitin, and L. Yu. Rusin, in Plasma Chemistry, Ed. by B. M. Smirnov (Energoatomizdat, Moscow, 1985), Vol. 12, p. 3 [in Russian].
  30. V.M. Azriel’, V.M. Akimov, J. Gryko, and L.Yu. Rusin, Sov. J. Chem. Phys. 8, 2205 (1991).
  31. V.M. Azriel’, V.M. Akimov, J. Gryko, and L.Yu. Rusin, Sov. J. Chem. Phys. 8, 2464 (1991).
  32. L.Yu. Rusin, J. Chem. Biochem. Kinetics 1, 205 (1991).
  33. V.M. Azriel’, L.Yu. Rusin, and M.B. Sevryuk, Sov. J. Chem. Phys. 12, 2079 (1994).
  34. V.M. Azriel’, L.Yu. Rusin, and M.B. Sevryuk. Theor. Chim. Acta 87, 195 (1993). https://doi.org/10.1007/BF01112933
  35. L.Yu. Rusin. J. Phys. Chem. 99, 15502 (1995). https://doi.org/10.1021/j100042a026
  36. L.Yu. Rusin, Izv. Akad. Nauk, Energet., No. 1, 41 (1997).
  37. V.M. Azriel’, D.B. Kabanov, L.I. Kolesnikova, and L.Yu. Rusin, Izv. Akad. Nauk, Energet., No. 5, 50 (2007).
  38. V.M. Azriel’, D.B. Kabanov, and L.Yu. Rusin. Russ. J. Phys. Chem. B 5, 177 (2011). https://doi.org/10.1134/S1990793111020175
  39. V.M. Azriel’, V.M. Akimov, E.V. Ermolova et al. Prikl. Fiz. Mat., No. 2, 30 (2018).
  40. V.M. Azriel’. Candidate’s Dissertation in Chemistry (Inst. Energy Probl. Chem. Phys. AS USSR, Moscow, 1990).
  41. L.Yu. Rusin. Doctoral Dissertation in Physics and Mathematics (Inst. Energy Probl. Chem. Phys. AS USSR, Moscow, 1991).
  42. M.B. Sevryuk. Doctoral Dissertation in Physics and Mathematics (Inst. Energy Probl. Chem. Phys. RAS, Moscow, 2003).
  43. E.V. Ermolova, Candidate’s Dissertation in Physics and Mathematics (Tal’rose Inst. Energy Probl. Chem. Phys. RAS, Moscow, 2013).
  44. L.Yu. Rusin, M.B. Sevryuk, V.M. Azriel’, V. M. Akimov, and D.B. Kabanov. TsITiS Report No. 216032240003 (Tal’rose Inst. Energy Probl. Chem. Phys. RAS, Moscow, 2016).
  45. V.M. Azriel’ and L.Yu. Rusin, Russ. J. Phys. Chem. B 2, 499 (2008). https://doi.org/10.1134/S1990793108040015
  46. V.M. Azriel’, E.V. Kolesnikova, L.Yu. Rusin, and M.B. Sevryuk. J. Phys. Chem. A 115, 7055 (2011). https://doi.org/10.1021/jp112344j
  47. D.B. Kabanov and L.Yu. Rusin. Chem. Phys. 392, 149 (2012). https://doi.org/10.1016/j.chemphys.2011.11.009
  48. D.B. Kabanov and L.Yu. Rusin. Russ. J. Phys. Chem. B 6, 475 (2012). https://doi.org/10.1134/S1990793112040033
  49. E.V. Kolesnikova and L.Yu. Rusin. Russ. J. Phys. Chem. B 6, 583 (2012). https://doi.org/10.1134/S1990793112050156
  50. V.M. Azriel’, L.Yu. Rusin, and M.B. Sevryuk. Chem. Phys. 411, 26 (2013). https://doi.org/10.1016/j.chemphys.2012.11.016
  51. E.V. Ermolova and L.Yu. Rusin. Russ. J. Phys. Chem. B 8, 261 (2014). https://doi.org/10.1134/S199079311403004X
  52. V.M. Azriel’, L.I. Kolesnikova, and L.Yu. Rusin. Russ. J. Phys. Chem. B 10, 553 (2016). https://doi.org/10.1134/S1990793116040205
  53. V.M. Azriel’, V.M. Akimov, E.V. Ermolova, D.B. Kabanov, L.I. Kolesnikova, L.Yu. Rusin, and M.B. Sevryuk. Russ. J. Phys. Chem. B 12, 957 (2018). https://doi.org/10.1134/S1990793118060131
  54. P. Brumer and M. Karplus. J. Chem. Phys. 58, 3903 (1973). https://doi.org/10.1063/1.1679747
  55. P. Brumer, Phys. Rev. A 10, 1 (1974). https://doi.org/10.1103/PhysRevA.10.1
  56. F.P. Tully, N.H. Cheung, H. Haberland, and Y.T. Lee. J. Chem. Phys. 73, 4460 (1980). https://doi.org/10.1063/1.440683
  57. E.S. Rittner. J. Chem. Phys. 19, 1030 (1951). https://doi.org/10.1063/1.1748448
  58. L.V. Lenin and L.Yu. Rusin, Chem. Phys. Lett. 175, 608 (1990). https://doi.org/10.1016/0009-2614(90)85589-5
  59. L.Yu. Rusin and M.B. Sevryuk. TsITiS Report No. AAAA-B16-216092340017-7 (Tal’rose Inst. Energy Probl. Chem. Phys. RAS, Moscow, 2016).
  60. A.A. Zembekov and F. Shnaider, Sov. J. Chem. Phys. 5, 2681 (1990).
  61. T.L. Gilbert, O. C. Simpson, and M. A. Williamson. J. Chem. Phys. 63, 4061 (1975). https://doi.org/10.1063/1.431848
  62. C.C. Kirkpatrick and L.A. Viehland. Chem. Phys. 98, 221 (1985). https://doi.org/10.1016/0301-0104(85)80135-X
  63. D.R. Lamm, R.D. Chelf, J.R. Twist et al. J. Chem. Phys. 79, 1965 (1983). https://doi.org/10.1063/1.445977
  64. E.K. Parks and S. Wexler, J. Phys. Chem. 88, 4492 (1984). https://doi.org/10.1021/j150664a009
  65. I.R. Gatland, M.G. Thackston, W. M. Pope, et al., J. Chem. Phys. 68, 2775 (1978). https://doi.org/10.1063/1.436069
  66. L.A. Viehland. Chem. Phys. 85, 291 (1984). https://doi.org/10.1016/0301-0104(84)85040-5
  67. V.M. Azriel’, V.M. Akimov, L.Yu. Rusin, and M.B. Sevryuk. Russ. J. Phys. Chem. B 4, 353 (2010). https://doi.org/10.1134/S1990793110030012
  68. L.I. Kolesnikova, L.Yu. Rusin, and M.B. Sevryuk. Russ. J. Phys. Chem. B 9, 849 (2015). https://doi.org/10.1134/S1990793115060160

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences