Oxygenic photosynthesis: induction of chlorophyll a fluorescence and regulation of electron transport in thylakoid membranes in silico

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper describes an extended mathematical model for the regulation of the key stages of electron transfer in the photosynthetic chain of electron transport (CET) and the associated processes of trans-thylakoid proton transfer and ATP synthesis in chloroplasts. This model includes primary plastoquinone PQA, associated with photosystem 2 (PS2), and secondary plastoquinone PQB, exchanging with plastoquinone molecules that are part of the pool of electronic carriers between PS2 and photosystem 1 (PS1). The model adequately describes the multiphase non-monotonic curves of chlorophyll fluorescence induction and the kinetics of P700 redox transformations (photoreaction center PS1), plastoquinone, changes in ATP and pH concentrations in lumen (pHin) and stroma (pHout) depending on the illuminating conditions of chloroplasts (variation in intensity and spectral composition of light). The results of computer simulation are consistent with experimental data on the kinetics of photoinduced P700 transformations in the leaves of higher plants and the induction of chlorophyll a fluorescence. The obtained data are discussed in the context of "short-term" mechanisms of pH-dependent regulation of electron transport in intact chloroplasts (non-photochemical quenching of excitation in PS2 and activation of Calvin–Benson cycle reactions).

Full Text

Restricted Access

About the authors

A. V. Vershubskii

Moscow Lomonosov State University

Email: an_tikhonov@mail.ru

Faculty of Physics

Russian Federation, Moscow, 119991

V. I. Priklonskii

Moscow Lomonosov State University

Email: an_tikhonov@mail.ru

Faculty of Physics

Russian Federation, Moscow, 119991

A. N. Tikhonov

Moscow Lomonosov State University

Author for correspondence.
Email: an_tikhonov@mail.ru
Russian Federation, Moscow, 119991

References

  1. Эдвардс Д., Уокер Д. 1986. Фотосинтез С3- и С4 растений: механизмы и регуляция. М.: Мир. 320 с.
  2. Blankenship R.E. 2002. Molecular mechanisms of photosynthesis. Malden, MA: Blackwell Science Inc.
  3. Buckanan B.B. 1980. Role of light in the regulation of chloroplast enzymes. Ann. Rev. Plant Physiol. 31, 341–374.
  4. Demmig-Adams B., Cohu C.M., Muller O., Adams W.W. 2012. Modulation of photosynthetic energy conversion efficiency in nature: From seconds to seasons. Photosynth. Res. 113(1–3), 75–88.
  5. Kono M., Terashima I. 2014. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B: Biology. 137, 89–99.
  6. Tikhonov A.N. 2015. Induction events and short-term regulation of electron transport in chloroplasts: An overview, Photosynth. Res. 125, 65–94.
  7. Matsubara S., Förster B., Waterman M., Robinson S.A., Pogson B.J., Gunning B., Osmond B. 2012. From ecophysiology to phenomics: Some implications of photoprotection and shade–sun acclimation in situ for dynamics of thylakoids in vitro. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 367 (1608), 3503–3514.
  8. Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and responding to excess light. Ann. Rev. Plant Biol. 60 (1), 239–260.
  9. Kasahara M., Kagawa T., Oikawa K., Suetsugu N., Miyao M., Wada M. 2002. Chloroplast avoidance movement reduces photodamage in plants. Nature. 420 (6917), 829–832.
  10. Kaiser E., Morales A., Harbinson J., Kromdijk J., Heuvelink E., Marcelis L. F. M. 2015. Dynamic photosynthesis in different environmental conditions. J. Exper. Botany, 66 (9), 2415–2426.
  11. Puthiyaveetil S., Kirchhoff H., Huhner R. 2016. Structural and functional dynamics of the thylakoid membrane system. In Chloroplasts: Current research and future trends. Ed., H. Kirchhoff. Norfolk, UK: Caister Academic Press, p. 59–87.
  12. Tikhonov A.N. 2018. The cytochrome b 6  f complex: Biophysical aspects of its functioning in chloroplasts. In Membrane protein complexes: Structure and function, subcellular biochemistry. Eds. Harris J.R., Boekema E.J. Singapore: Springer, Subcell. Biochem. 87, p. 287–328. doi: 10.1007/978-981-10-7757-9_10.
  13. Malone L.A., Proctor M.S., Hitchcock A., Hunter C.N., Johnson M.P. 2021. Cytochrome b 6  f – Orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta. 1862 (5), 148380.
  14. Sarewicz M., Pintscher S., Pietras R., Borek A., Bujnowicz Ł., Hanke G., Cramer W.A., Finazzi G., Osyczka A. 2012. Catalytic reactions and energy conservation in the cytochrome bc 1 and b 6  f complexes of energy-transducing membranes. Chem. Rev. 121 (4), 2020–2108.
  15. Тихонов А.Н. 2023. Электронный транспорт в хлоропластах: регуляция и альтернативные пути переноса электронов. Биохимия. 88 (10), 1742–1760.
  16. Устынюк Л.Ю., Тихонов А.Н. 2022. Окисление пластохинола – лимитирующая стадия в цепи переноса электронов в хлоропластах. Биохимия. 87 (10), 1372–1387.
  17. Tikhonov A.N. 2024. The cytochrome b 6  f complex: Plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynth. Res. 159, 203–227.
  18. Munekage Y., Hashimoto M., Miyake C., Tomizawa K., Endo T., Tasaka M., Shikanai T. 2004. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature. 429, 579–582.
  19. DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schünemann D., Finazzi G., Joliot P., Barbato R., Leister D.A. 2008. Complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell. 132 (2), 273–285.
  20. Strand D.D., Fisher N., Kramer D.M. 2016. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Acad. Press, p. 89–100.
  21. Shikanai T., Yamamoto H. 2017. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol Plant. 10 (1), 20–29.
  22. Kobayashi R., Yamamoto H., Ishibashi K., Shikanai T. 2024. Critical role of cyclic electron transport around photosystem I in the maintenance of photosystem I activity. Plant J. 118 (6), 2141–2153.
  23. Photosynthesis in silico: Understanding complexity from molecules to ecosystems. 2009. Eds. Laisk A., Nedbal L., Govindjee. Dordrecht: Springer.
  24. Rubin A., Riznichenko G. 2014. Mathematical Biophysics. N.Y.: Springer.
  25. Stirbet A., Govindjee, Strasser B., Strasser R.J. 1998. Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. J. Theor. Biol. 193, 131–151.
  26. Lazár D. 2009. Modelling of light-induced chlorophyll a fluorescence rise (O–J–I–P transient) and changes in 820 nm-transmittance signal. Photosynthetica. 47 (4), 483–498.
  27. Вершубский А.В., Тихонов А.Н. 2013. Электронный транспорт и трансмембранный перенос протонов в фотосинтетических системах оксигенного типа in silico. Биофизика. 58 (1), 75–89.
  28. Tikhonov A.N., Vershubskii A.V. 2014. Computer modeling of electron and proton transport in chloroplasts. Biosystems, 121, 1–21.
  29. Вершубский А.В., Мишанин В.И., Тихонов А.Н. 2014. Моделирование регуляции фотосинтетического транспорта электронов у цианобактерий. Биол. Мембраны. 31 (2), 110–128.
  30. Vershubskii A.V., Trubitsin B.V., Priklonsky V.I., Tikhonov A.N. 2017. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. Biochim. Biophys. Acta, 1859, 388–401.
  31. Вершубский А.В., Тихонов А.Н. 2019. рН-зависимая регуляция электронного и протонного транспорта в хлоропластах in situ и in silico. Биол. мембраны. 36 (4), 242–254.
  32. Tikhonov A.N., Vershubskii A.V. 2020. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 146, 299–329.
  33. Karavayev V.A., Kukushkin A.K. 1976. Study of electron chain state in the leaves of higher plants by the fast fluorescence method. Biophysics, 21 (5), 862–866.
  34. Lazár D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1412 (1), 1–28.
  35. Stirbet A., Govindjee. 2016. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. Photosynth. Res. 130 (1–3), 193–213.
  36. Schansker G., Tóth S., Holzwart A.R., Garab G. 2014. Chlorophyll a fluorescence: Beyond the limits of the Q A model. Photosynth. Res. 128, 43–58.
  37. Asada K. 1999. The water-water cycle in chloroplasts. Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 (1), 601–639.
  38. Kuvykin I.V., Vershubskii A.V., Ptushenko V.V., Tikhonov A.N. 2008. Oxygen as an alternative electron acceptor in the photosynthetic chain of electronic transport of C 3 plants. Biochemistry (Moscow). 73, 1063–1075.
  39. Horton P., Ruban A.V. 1993. ΔpH-dependent quenching of the F o level of chlorophyll fluorescence in spinach leaves. Biochim. Biophys. Acta. 1142, 203–206.
  40. Wilson S., Ruban A.V. 2020. Rethinking the influence of chloroplast movements on non-photochemical quenching and photoprotection. Plant Physiol. 183, 1213–1223.
  41. Semenov A.Yu, Tikhonov A.N. 2023. Electrometric and electron paramagnetic resonance measurements of a difference in the transmembrane electrochemical potential: Photosynthetic subcellular structures and isolated pigment–protein complexes. Membranes. 13, 1–22.
  42. Kalaji H.M., Schansker G., Bresic M., Bussotti F., Calatayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Li P., Losciale P., Mishra V.K., Misra A.N., Nebauer S.G., Pancaldi S., Penella C., Pollastrini M., Suresh K., Tambussi E., Yanniccari M., Zivcak M., Cetner M.D., Samborska I.A., Stirbet A., Olsovska K., Kunderlikova K., Shelonzek H., Rusinowski S., Bąba W. 2017. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132,13–66.
  43. Genty B., Briantais J.-M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 990, 87–92.
  44. Zaks J., Amarnath K., Sylak-Glassman E.J., Fleming G.R. 2013. Models and measurements of energy-dependent quenching. Photosynth. Res. 116, 389–409.
  45. Li X.-P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., Niyogi K.K. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279 (22), 22866–22874.
  46. Järvi S., Gollan P.J., Aro E.-M. 2013. Understanding the roles of the intrathylakoid lumen in photosynthetic regulation. Front. Plant Sci. 4, 434.
  47. Suslichenko I.S., Trubitsin B.V., Vershubskii A.V., Tikhonov A.N. 2022. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol. Biochem. 185, 233–243.
  48. Murchie E.H., Ruban A.V. 2020. Dynamic non-potochemical quenching in plants: From molecular mechanism to productivity. Plant J. 101, 885–896.
  49. Horton P. 2012. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 367 (1608), 3455–3465.
  50. Беньков М.А., Сусличенко И.С., Трубицин Б.В., Тихонов А.Н. 2023. Влияние акклимации растений на электронный транспорта в мембранах хлоропластов Cucumis sativus и Cucumis melo. Биол. мембраны. 40 (3), 172–187.
  51. Mishanin V.I., Trubitsin B.V., Patsaeva S.V., Ptushenko V.V., Solovchenko A.E., Tikhonov A.N. 2017. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: Chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth. Res. 133 (1–3), 87–102.
  52. Mishanin V.I., Trubitsin B.V., Benkov M.A., Minin A.A., Tikhonov A.N. 2016. Light acclimation of shade-tolerant and light-resistant Tradescantia species: Induction of chlorophyll a fluorescence and P 700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth. Res. 130 (1–3), 275–291.
  53. Рыжиков С.Б., Тихонов А.Н. 1988. Регуляция скорости переноса электрона в фотосинтетических мембранах высших растений. Биофизика. 33, 642–646.
  54. Tikhonov A.N. 2013. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511–534.
  55. Вершубский А.В., Приклонский В.И., Тихонов А.Н. 2004. Математическое моделирование электронного и протонного транспорта, сопряженного с синтезом ATP в хлоропластах. Биофизика. 49, 57–71.
  56. Vershubskii A.V., Kuvykin I.V., Priklonsky V.I., Tikhonov A.N. 2011. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Biosystems. 103, 164–179.
  57. Murchie E.H., Ruban A.V. 2020. Dynamic non-photochemical quenching in plants: From molecular mechanism to productivity. Plant J. 101, 885–896.
  58. Ruban A.V. 2018. Adaptive reorganisation of the light harvesting antenna. In Photosynthesis and Bioenergetics. Eds. Barber J., Ruban A. London, UK: World Scientific, p. 287–328.
  59. Ризниченко Г.Ю., Беляева Н.Е., Коваленко И.Б., Антал Т.К., Горячев С.Н., Маслаков А.С., Плюснина Т.Ю., Федоров В.А., Хрущев С.С., Яковлева О.В., Рубин А.Б. 2022. Математическое моделирование электронного транспорта в первичных процессах фотосинтеза. Биохимия. 87 (10), 1350–1371.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The processes of electron and proton transport considered in the model and the scheme of compartmentalization of hydrogen ions and transmembrane proton fluxes described in the model. Designations: CBT – Calvin–Benson cycle; Fd – ferredoxin; FNR – ferredoxin-NADP reductase; CET – cyclic electron transport; P700 and P680 are the primary electron donors of photosystem 1 (PS1) and photosystem 2 (PS2), respectively; PQA – primary plastoquinone associated with photosystem 2 (PS2), PQB – secondary plastoquinone exchanged with plastoquinone molecules included in the pool of electron carriers between PS2 and photosystem 1 (PS1); Pc – plastocyanin; PQ – plastoquinone (oxidized form). РQH2 – plastoquinol (reduced form); b6 f – cytochrome complex b6 f; PTOX – terminal oxidases.

Download (234KB)
3. Fig. 2. Scheme of the processes of energy migration and electron transfer on the acceptor side of PS2, considered within the framework of the present model for describing the induction of chlorophyll fluorescence.

Download (82KB)
4. Fig. 3. Kinetics of chlorophyll fluorescence induction calculated for different intensities of incident light. Model parameters L1 and L2 (at L2/L1 = 1.5) correspond to the following light intensities: 1 = 100 quanta/s exciting PS1; 2 - 150 quanta/s; 3 - 300 quanta/s under the condition L2/L1 = 1.5. Other model parameters: L2/L1 = 1.5; [PQ]0/[P700]0 = 20. Initial conditions: [PQA(0)]/[PQA]0 = 0.01; [PQB(0)]/[PQB]0 = 0.1; [PQH2(0)]/[PQ]0 = 0.2. P700, [Pс(0)]/[Pс]0 = 0.005; and [Fd(0)]/[Fd]0 = 0.85. The constants of the reverse reactions kBQ and kAP680 (see Fig. 2) were assumed to be equal to zero.

Download (90KB)
5. Fig. 4. Kinetic curves of photoinduced reduction of three forms of plastoquinone, PQA, PQB and n(PQH2)n, calculated for the intensity of the acting light corresponding to 150 quanta/s exciting PS2. The index “n” in the designation (PQH2)n indicates that n PQH2 molecules (relative to PS2) included in the pool of PQ/PQH2 molecules that are not directly bound to PS2 are considered. In the calculations, the results of which are presented in this figure, the total number of molecules of the plastoquinone pool (PQ + PQH2) was n = 10. Taking into account that the PQH2 molecule is a two-electron carrier, the maximum possible “electron capacity” of the plastoquinone pool is 20 equivalents. The values ​​of the remaining parameters of the model are the same as for the calculations, the results of which are presented in Fig. 3.

Download (106KB)
6. Fig. 5. Kinetics of photoinduced changes in the concentrations of the oxidized form of the photoreaction center, calculated for different intensities of the acting light, indicated in the caption to Fig. 3: 1 – 100 quanta/s; 2 – 150 quanta/s; 3 – 300 quanta/s. The vertical arrows indicate the moments of turning the light on and off.

Download (81KB)
7. Fig. 6. Kinetics of photoinduced changes in the concentrations of oxidized forms of plastocyanin (a) and ferredoxin (b) depending on the intensity of the incident light: 1 - 100 quanta/s; 2 - 150 quanta/s; 3 - 300 quanta/s. The vertical arrows indicate the moments of turning the light on and off. The relative concentration of Fd is equal to [Fd]0/[P700]0 = 8.

Download (172KB)
8. Fig. 7. Kinetics of photoinduced changes in pH inside the thylakoids (pHin) and in the stroma (pHout) (panel a) and ATP concentration (panel b), calculated for different intensities of the acting light indicated in the caption to Fig. 3: 1 - 100 quanta/s; 2 - 150 quanta/s; 3 - 300 quanta/s. The vertical arrows indicate the moments of turning the light on and off.

Download (160KB)
9. Fig. 8. Kinetics of chlorophyll fluorescence induction (a), photoinduced changes in the concentrations of the oxidized form of the photoreaction center P700+ (b), plastoquinol PQH2 (c), calculated at an incident light intensity of 150 quanta/s (at L2/L1 = 1.5) and different cyclic electron transport flows specified by the ratio of rate constants kFQ/kFN: 1 – kFQ/kFN = 0; 2 – kFQ/kFN = 0.15; 3 – kFQ/kFN = 0.35.

Download (105KB)
10. Appendix
Download (302KB)

Copyright (c) 2025 The Russian Academy of Sciences