Xanthine oxidoreductase: structure, distribution and physioloical role
- Авторлар: Bedina S.A.1,2, Mozgovaya E.E.1, Spitsina S.S.1,2, Mamus M.A.1, Trofimenko A.S.1
-
Мекемелер:
- Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
- Volgograd State Medical University
- Шығарылым: Том 55, № 3 (2024)
- Беттер: 45-57
- Бөлім: Articles
- URL: https://clinpractice.ru/0301-1798/article/view/676207
- DOI: https://doi.org/10.31857/S0301179824030037
- EDN: https://elibrary.ru/BBKWVX
- ID: 676207
Дәйексөз келтіру
Аннотация
The article presents an overview of the modern literature on the structure, distribution, biological and physiological role of xanthine oxidoreductase (XOR). XOR has been identified in all living organisms, from bacteria to humans. However, only in mammals it is presented in two forms, other species contain exclusively the XDH form. The enzyme is a homodimer with independent electron transfer in each monomer. XOR catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid in the final stage of purine metabolism and is widely distributed enzyme. The review highlights the forms of XOR and their role in the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS) and synthesis of uric acid which are involved in many physiological processes. Uric acid shows antioxidant activity, and ROS and RNS play a role in innate immunity, in signaling, metabolism of xenobiotics, regulation of cellular redox potential and are also involved in mammogenesis and lactogenesis. Thus, in recent years significant progress has been made in understanding the biochemical and physiological nature of this enzyme system.
Негізгі сөздер
Толық мәтін

Авторлар туралы
S. Bedina
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”; Volgograd State Medical University
Хат алмасуға жауапты Автор.
Email: clinicalbiochemistry@yandex.ru
Ресей, 400138, Volgograd; 400131, Volgograd
E. Mozgovaya
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Email: nauka@pebma.org
Ресей, 400138, Volgograd
S. Spitsina
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”; Volgograd State Medical University
Email: svetlanahime@yandex.ru
Ресей, 400138, Volgograd; 400131, Volgograd
M. Mamus
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Email: m.mamus@yandex.ru
Ресей, 400138, Volgograd
A. Trofimenko
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Email: a.s.trofimenko@mail.ru
Ресей, 400138, Volgograd
Әдебиет тізімі
- Бедина С.А., Мозговая Е.Э., Трофименко А.С. и др. Ксантиноксидоредуктаза // Актуальные проблемы современной ревматологии: сб. науч. работ. Волгоград, 2018. Выпуск XXXV / Под ред. И.А. Зборовской. М.: Планета, 2018. С. 62–68. https://doi.org/10.18411/978-5-907109-24-7-2018-xxxv-62-68
- Agarwal A., Banerjee A., Banerjee U.C. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling // Crit Rev Biotechnol. 2011. V. 31. №. 3. P. 264–280. https://doi.org/10.3109/07388551.2010.527823
- Al-Shehri S.S., Duley J.A., Bansal N. Xanthine oxidase-lactoperoxidase system and innate immunity: biochemical actions and physiological roles // Redox Biol. 2020. V. 34. № 101524. https://doi.org/10.1016/j.redox.2020.101524
- Angermüller S., Bruder G., Völkl A. et. al. Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study // Eur. J. Cell Biol. 1987. V. 45. P. 137–144
- Bakhtiari S., Toosi P., Samadi S., Bakhshi M. Assessment of Uric Acid Level in the Saliva of Patients with Oral Lichen Planus // Med. Princ. Pract. 2017. V. 26. P. 57–60. https://doi.org/10.1159/000452133
- Batchu U., Mandava K. Biochemical role of xanthine oxidoreductase and its natural inhibitors: an overview // Int. J. Pharm. Pharm. Sci. 2016. V. 8. № 10. P. 57–65. https://doi.org/10.22159/ijpps.v8i10.13927
- Battelli M.G., Bolognesi A., Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme // Biochim. Biophys. Acta. 2014. V. 1842. № 9. P. 1502–1517. https://doi.org/10.1016/j.bbadis.2014.05.022
- Battelli M.G., Bortolotti M., Bolognesi A., Polito L. Pro-aging effects of xanthine oxidoreductase products // Antioxidants. 2020. V. 9. № 839. https://doi.org/10.3390/antiox9090839
- Battelli M.G., Bortolotti M., Polito L., Bolognesi A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase // Redox Biol. 2019. V. 21. № 101070. https://doi.org/10.1016/j.redox.2018.101070
- Battelli M.G., Bortolotti M., Polito L., Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome // Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 2018. V. 1864. № 8. P. 2557–2565. https://doi.org/10.1016/j.bbadis.2018.05.003
- Battelli M.G., Polito L., Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress // Atherosclerosis. 2014. V. 237. P. 562–567. https://doi.org/10.1016/j.atherosclerosis.2014.10.006
- Battelli M.G., Polito L., Bortolotti M., Bolognesi A. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects // Oxid. Med. Cell. Longev. 2016. № 3527579. https://doi.org/10.1155/2016/3527579
- Battelli M.G., Polito L., Bortolotti M., Bolognesi A. Xanthine oxidoreductase in cancer: more than a differentiation marker // Cancer. Med. 2016. V. 5. № 3. P. 546–557. https://doi.org/10.1002/cam4.601
- Berry C.E., Hare J. M. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications // J. Physiol. 2004. V. 555. Pt. 3. P. 589–606. https://doi.org/10.1113/jphysiol.2003.055913
- Bortolotti M., Polito L., Battelli M.G., Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks // Redox Biology. 2021. V. 41. № 101882. https://doi.org/10.1016/j.redox.2021.101882
- Bukharinova M.A., Stozhko N.Y., Novakovskaya E. et al. Developing Activated Carbon Veil Electrode for Sensing Salivary Uric Acid // Biosensors. 2021. V. 11. № 287. https://doi.org/10.3390/bios11080287
- Cantu-Medellin N., Kelley E.E. Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how // Nitric Oxide. 2013. V. 34. P. 19–26. https://doi.org/10.1016/j.niox.2013.02.081
- Cheung K.J., Tzameli I., Pissios P. et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARγ activity // Cell Metab. 2007. V. 5. № 2. P. 115–28. https://doi.org/10.1016/j.cmet.2007.01.005
- Chaudhary K., Malhotra K., Sowers J., Aroor A. Uric Acid-key ingredient in the recipe for cardiorenal metabolic syndrome // Cardiorenal. Med. 2013. V. 3. P. 208–220. https://doi.org/10.1159/000355405
- Chung H.Y., Song S.H., Kim H.J. et al.. Modulation of renal xanthine oxidoreductase in aging: gene expression and reactive oxygen species generation // J. Nutr. Health Aging. 1999. V. 3. № 1. P. 19–23.
- Cicero AFG, Fogacci F. Di Micoli V. et al. Purine metabolism dysfunctions: experimental methods of detection and diagnostic potential. // Int. J. Mol. Sci. 2023. V. 24. № 8. 7027. https://doi.org/10.3390/ijms24087027
- Corry D.B., Eslami P., Yamamoto K. et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system // J. Hypertens. 2008. V. 26. P. 269–275. https://doi.org/10.1097/HJH.0b013e3282f240bf
- Eisenbacher J.L., Schrezenmeier H., Jahrsdörfer B. et al. S100A4 and uric acid promote mesenchymal stromal cell induction of IL-10+/Ido+ lymphocytes // J. Immunol. 2014. V. 192. P. 6102–6110. https://doi.org/10.4049/jimmunol.1303144
- Furuhashi M., Matsumoto M., Tanaka M. et al. Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population // Circ. J. 2018. V. 82. P. 1892–1899. https://doi.org/10.1253/circj.CJ-18-0082
- Furuhashi M. Fatty Acid-Binding Protein 4 in Cardiovascular and Metabolic Diseases // J. Atheroscler. Thromb. 2019. V. 26. P. 216–232. https://doi.org/10.5551/jat.48710
- Furuhashi M., Matsumoto M., Murase T. et al. Independent links between plasma xanthine oxidoreductase activity and levels of adipokines // J. Diabetes Investig. 2019. V. 10. P. 1059–1067. https://doi.org/10.1111/jdi.12982
- Garattini E., Mendel R., Romão M.J. et al. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology // Biochem. J. 2003. V. 372. Pt 1. P. 15–32. https://doi.org/10.1042/BJ20030121
- Godber B.L., Doel J.J., Sapkota G.P. et al. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase // J. Biol. Chem. 2000. V. 275. № 11. P. 7757–7763. https://doi.org/10.1074/jbc.275.11.7757
- Hershfield M.S., Roberts L.J., Ganson N.J. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14351–14356. https://doi.org/10.1073/pnas.1001072107
- Ichida K., Amaya Y., Okamoto K., Nishino T. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans // Int. J. Mol. Sci. 2012. V. 13. № 11. P. 15475–15495. https://doi.org/10.3390/ijms131115475
- Ives A., Nomura J., Martinon F. et. al. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation // Nat. Commun. 2015. V. 6. P. 6555. https://doi.org/10.1038/ncomms7555
- Jaiswal A., Madaan S., Acharya N. et al. Salivary Uric Acid: A Noninvasive Wonder for Clinicians? // Cureus. 2021. V. 13. № e19649. https://doi.org/10.7759/cureus.19649
- Joosten L.A.B., Crişan T.O., Bjornstad P., Johnson R.J. Asymptomatic hyperuricaemia: a silent activator of the innate immune system // Nat. Rev. Rheumatol. 2020. V. 16. P. 75–86. https://doi.org/10.1038/s41584-019-0334-3
- Kalimuthu P., Petitgenet M., Niks D. et al. The oxidation-reduction and electrocatalytic properties of CO dehydrogenase from Oligotropha carboxidovorans // Biochim. Biophys. Acta. Bioenerg. 2020. V. 1861. № 148118. https://doi.org/10.1016/j.bbabio.2019.148118
- Kelley E.E. A new paradigm for XOR-catalyzed reactive species generation in the endothelium // Pharmacol. Rep. 2015. V. 67. P. 669–674. https://doi.org/10.1016/j.pharep.2015.05.004
- Khosla U.M., Zharikov S., Finch J.L. et al. Hyperuricemia induces endothelial dysfunction // Kidney Int. V. 67. P. 1739–1742. https://doi.org/10.1111/j.1523-1755.2005.00273.x
- Kim Y.S., Nam H.J., Chung H.Y. et al. Role of xanthine dehydrogenase and aging on the innate immune response of Drosophila // J. Am. Aging Assoc. 2001. V. 24. № 4. P. 187–93. https://doi.org/10.1007/s11357-001-0020-6
- Kumar R., Joshi G., Kler H. et al. Toward an understanding of structural insights of xanthine and aldehyde oxidases: an overview of their inhibitors and role in various diseases // Med. Res. Rev. 2018. V. 38. № 4. P. 1073–1125. https://doi.org/10.1002/med.21457
- Li H., Kundu T.K., Zweier J.L. Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite // J. Biol Chem 2009. V. 284. № 49. P. 33850–33858. https://doi.org/10.1074/jbc.M109.019125
- Lima W.G., Martins-Santos M.E., Chaves V.E. Uric acid as a modulator of glucose and lipid metabolism // Biochimie. 2015. V. 116. P. 17–23. https://doi.org/10.1016/j.biochi.2015.06.025
- Liu L., Wang B., Liu D. et al. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots // BMC Plant. Biol. 2020. V. 20. № 138. https://doi.org/10.1186/s12870-020-02349-9
- Maia L.B, Moura J.J.G. Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: nitrite reduction by molybdoenzymes // Redox Biol. 2018. V. 19. P. 274–289. https://doi.org/10.1016/j.redox.2018.08.020
- Maia L.B., Pereira V., Mira L., Moura J.J. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo // Biochemistry. 2015. V. 54. № 3. P. 685–710. https://doi.org/10.1021/bi500987w
- McNally J.S., Davis M.E., Giddens D.P. et al. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress // Am. J. Physiol. Heart Circ. Physiol. 2003. V. 285. № 6. PH2290–H2297. https://doi.org/10.1152/ajpheart.00515.2003
- Miake J., Hisatome I., Tomita K. Impact of Hyper- and Hypo-Uricemia on Kidney Function // Biomedicines. 2023. V. 11. № 5. 1258. https://doi.org/10.3390/biomedicines11051258
- Monks J., Dzieciatkowska M., Bales E.S. et al. Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion // J. Physiol. 2016. V. 594. P. 5899–5921. https://doi.org/10.1113/JP272390
- Neogi T., George J., Rekhraj S. et al. Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal // Arthritis Rheum. 2012. V. 64. P. 327–338. https://doi.org/10.1002/art.33369
- Nishino T., Okamoto K., Kawaguchi Y. et al. The C-terminal peptide plays a role in the formation of an intermediate form during the transition between xanthine dehydrogenase and xanthine oxidase // FEBS J. 2015. V. 282. P. 3075–3090. https://doi.org/10.1111/febs.13277
- Ortiz de Zevallos J., Woessner M.N., Kelley E.E. Skeletal muscle as a reservoir for nitrate and nitrite: The role of xanthine oxidase reductase (XOR) // Nitric Oxide. 2022. V. 129. P. 102–109. https://doi.org/10.1016/j.niox.2022.10.004
- Pritsos C.A. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. // Chem-Biol. Interact. 2000. V. 129. № 1–2. P. 195–208. https://doi.org/10.1016/s0009-2797(00)00203-9
- Rendić S.P., Crouch R.D., Guengerich F.P. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions // Arch. Toxicol. 2022. V. 96. P. 2145–2246. https://doi.org/10.1007/s00204-022-03304-3
- Roberts L.D. Does inorganic nitrate say NO to obesity by browning white adipose tissue? // Adipocyte. 2015. V. 4. P. 311–314. https://doi.org/10.1080/21623945.2015.1005525
- Rouquette M., Page S., Bryant R. et al. Xanthine oxidoreductase is asymmetrically locali zed on the outer surface of human endothelial and epithelial cells in culture // FEBS Lett. 1998. V. 426. P. 397–401. https://doi.org/10.1016/S0014-5793(98)00385-8
- Roy J., Galano J.M., Durand T. et al. Physiological role of reactive oxygen species as promoters of natural defenses // Faseb. J. 2017. V. 31. P. 3729–3745. https://doi.org/10.1096/fj.201700170R
- Sánchez-Lozada L.G., Lanaspa M.A., Cristóbal-García M. et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations // Nephron Experimental Nephrology. 2013. V. 121. № 3–4. P. e71–e78. https://doi.org/10.1159/000345509
- Steven J., Forrester D.S., Kikuchi M.S. et al. Reactive Oxygen Species in Metabolic and Inflammatory Signaling // Circulation Research. 2018. V. 122. № 6. P. 877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401
- Tsushima Y., Nishizawa H., Tochino Y. et al. Uric acid secretion from adipose tissue and its increase in obesity // J. Biol. Chem. 2013. V. 288. P. 27138–27149. https://doi.org/10.1074/jbc.M113.485094
- Williams X.M., Bossert A.T, Devalance E. et al. Indirect Antioxidant Effects of the Nitrite Anion: Focus on Xanthine Oxidase // Adv. Redox Res. 2023. V. 7. № 100058. https://doi.org/10.1016/j.arres.2022.100058
- Wong C.K., Chen Y., Ho L.M. et. al. The effects of hyperuricaemia on flow-mediated and nitroglycerin-mediated dilatation in high-risk patients // Nutr. Metab. Cardiovasc. Dis. 2014. V. 24. P. 1012–1019. https://doi.org/10.1016/j.numecd.2014.02.006
- Wright H.L. Moots R.J., Edwards S.W. The multifactorial role of neu-trophils in rheumatoid arthritis // Nature Reviews Rheumatology. 2014. V. 10. № 10. P. 593–601. https://doi.org/10.1038 nrreum.2014.80
Қосымша файлдар
