Accounting for viscous and thermal effects in time in computational problems of acoustics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-dependent formulation is presented based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, the results of numerical modeling are compared with the analytical solution.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Korolkov

University of Manchester

Email: laptev97@bk.ru
Ұлыбритания, Oxford Road, Manchester, M13 9PL

A. Laptev

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: laptev97@bk.ru
Ресей, Leninskie Gory, Moscow, GSP-1, 119991

A. Shanin

Lomonosov Moscow State University

Email: laptev97@bk.ru
Ресей, Leninskie Gory, Moscow, GSP-1, 119991

Әдебиет тізімі

  1. Pierce A.D. Acoustics, An Introduction to Its Physical Principles and Applications. Acoustical Society of America, 2019. Разд. 10.4.
  2. Tijdeman H. On the propagation of sound waves in cylindrical tubes // J. Sound Vibration. 1975. V. 39. № 1. P. 1–33.
  3. Richards W.B. Propagation of Sound Waves in Tubes of Noncircular Cross Section. NASA Technical Paper 2601, NASA Lewis Research Center, Cleveland, Ohio, 1986.
  4. Каспарянц А.А. К вопросу о распространении звуковых волн в “газах и жидкостях Ван-дер-Ваальса” // Акуст. журн. 1958. Т. 4. № 4. С. 325–332.
  5. Rienstra S.W., Hirschberg A. An Introduction in Acoustics. Extended and revised version of report IWDE92–06. Eindhoven University of Technology, 2016. Разд. 4.5.
  6. Searby G., Habibullah M., Nicole A., Laroche E. Prediction of the Efficiency of Acoustic Damping Cavities // J. Propulsion and Power. 2008. V. 24. № 3. P. 516–523.
  7. Berggren M., Bernland A., Noreland D. Acoustic boundary layers as boundary conditions // J. Computational Physics. 2018. V. 371. P. 633–650.
  8. Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, 1986. 318 с.
  9. Linz P. Analytical and Numerical Methods for Volterra Equations. Studies for Applied Mathematics. 1985. Разд. 11.4.
  10. Zwikker C., Kosten C.W. Sound Absorbing Materials. Elsevier Pub. Co., 1949.
  11. Stinson M.R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape // J. Acoust. Soc. Am. 1991. V. 89. № 2. P. 550–558.
  12. Weston D.E. The Theory of Propagation of Plane Sound Waves in Tubes // Proc. of the Physical Society. Section B. 1953. V. 66. № 8. P. 695–709.
  13. Allard J.F., Atalla N. Propagation of Sound in Porous Media. John Wiley & Sons, Ltd, 2009. Разд. 4.4 и 4.7.
  14. Craggs A., Hildebrandt J.G. Effective densities and resistivities for acoustic propagation in narrow tubes // J. Sound Vibration. 1984. V. 92. № 3. P. 321–331.
  15. Holm S. Waves with Power-Law Attenuation. Acoustical Society of America, 2019. Разд. 1.4.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Approximate view of the region Ω.

Жүктеу (39KB)
3. Fig. 2. Geometry of the model.

Жүктеу (11KB)
4. Fig. 3. Comparison of numerical simulation with analytical solution. The dotted line indicates the pulse at a distance of 50 cm from the emitting surface without taking into account thermoviscous effects, the dashed line indicates taking into account thermoviscous effects, and the solid line indicates the analytical solution (12).

Жүктеу (26KB)
5. Fig. 4. Dependence of the difference between the numerical and analytical solutions on the grid step.

Жүктеу (24KB)

© The Russian Academy of Sciences, 2024