Physical Principles and Main Research Results Determining the Development of Thrusters with Closed Electron Drift

封面

如何引用文章

全文:

详细

The paper presents the results of many years of research carried out in various organizations of theUSSR and Russia in the process of developing thrusters with anode layer (TALs) and stationary plasmathrusters (SPTs). They are known under the general name “thrusters with closed electron drift” (TCEDs),since they are developed on the basis of plasma ion accelerators with closed electron drift (ACEDs). TCEDshave come a long way in development. As a result, the SPT has become one of the most widely used electricrocket thrusters (ERTs) and continues to develop. The TAL development has also reached a fairly high leveland is close to practical use. Therefore, here we consider the main physical principles and research results thatdetermined the progress in the SPT and TAL development with the aim of their analysis and generalization,as well as assessment of their applicability for further development such thrusters. A brief overview of the mainstages of the SPT and TAL development and the results achieved at these stages are given. It is shown that themain problem of their further development is to ensure both high thrust efficiency and a long service life. Itis also shown that the main factor limiting the service life of TALs and SPTs is the ingress of accelerated ionsonto their structure elements; therefore, in order to control the ion motion, it is first of all necessary to understandthe patterns of electric field formation in TCED discharges. New properties of TCED discharges andthe peculiarities of electric field formation are revealed and their known properties are clarified, which determinethe thickness and position of the acceleration zone with the main potential drop in the discharge andthe flows of accelerated ions onto the thruster structure elements. The methods of controlling the thicknessand position of the acceleration zone in an TCED by varying the magnetic field characteristics, successfullytested at the second stage of the SPT and TAL development, are considered and analyzed. It is shown thatthese methods make it possible to effectively control the operation of an TCED and its characteristics, andphysical conditions ensuring the efficiency of their application are determined. Physical conditions for theimplementation and justification of the feasibility of completely removing the acceleration zone from the thruster as the main direction of modern TCED development are determined, taking into account the analysis of the properties of the discharge and the peculiarities of electric field formation in an TCED. The main conclusions on the issues considered are given.

全文:

受限制的访问

作者简介

V. Kim

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute (National Research University)

编辑信件的主要联系方式.
Email: riame4@mai.ru
俄罗斯联邦, Moscow, 125993

A. Semenkin

Keldysh Research Center, Roscosmos

Email: riame4@mai.ru
俄罗斯联邦, Moscow, 125438

E. Shilov

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute (National Research University)

Email: riame4@mai.ru
俄罗斯联邦, Moscow, 125993

参考

  1. Гришин С.Д., Ерофеев В.С., Жаринов А.В. Плазменные ускорители / Ред. Л.А. Арцимович. М.: Машиностроение, 1973. С. 54.
  2. Есипчук Ю.В. Плазменные ускорители / Ред. Л.А. Арцимович. М.: Машиностроение, 1973. С. 75.
  3. Гришин С.Д., Лесков Л.В., Козлов Н.П. Электрические ракетные двигатели. М.: Машиностроение, 1975. С. 272.
  4. Марахтанов М.К. Плазменные ускорители и ионные инжекторы / Ред. Н.П. Козлов и А.И. Морозов. М.: Наука, 1984. С. 264.
  5. Козубский К.Н., Мурашко В.М., Рылов Ю.П., Трифонов Ю.В., Ходненко В.П., Ким В.П., Попов Г.А., Обухов В.А. // Физика плазмы. 2003. Т. 29. С. 277.
  6. Kim V., Kozubsky K.N, Murashko V.M., Semenkin A.V. // Proc. 30th Internat. Electric Propulsion Confer. Florence, 2007. Paper IEPC-2007-142.
  7. Ким В.П., Семенкин А.В., Хартов С.А. Конструктивные и физические особенности двигателей с замкнутым дрейфом электронов. М.: МАИ, 2016.
  8. Юшманов E.E. Физика плазмы и проблемы управляемых термоядерных реакций / Ред. М.А. Леонтович. М.: АН СССР, 1958. Вып. 4. С. 235.
  9. Ерофеев В.С., Лесков Л.В. Физика и применение плазменных ускорителей / Ред. А.И. Морозов. Минск: Наука и техника, 1974. С. 18.
  10. Абдюханов В.А., Гришин С.Д., Ерофеев В.С., Жаринов А.В., Лесков Л.В., Ляпин Е.А., Наумкин В.П., Попов Ю.С., Сафронов И.Н. Ускорители ионов с анодным слоем (обзор). М.: ЦНИИМАШ, 1975. С. 5.
  11. Ерофеев В.С., Жаринов А.В., Ляпин Е.А. Плазменные ускорители / Ред. Л.А. Арцимович. М.: Машиностроение, 1973. С. 68.
  12. Гусев Ю.Г., Пильников А.В. // Электронный ж-л “Труды МАИ”. Вып. 60. www.mai.ru/science/trudy.
  13. Solodukhin A.E., Semenkin A.V., Tverdokhlebov S.O., Kochergin A.V. // Proc. 27th Internat. Electric Propulsion Confer. Pasadena, 2001. Paper IEPC-01-32.
  14. Garkusha V.I., Lebedev Y.V., Semenkin A.V., Zakharenkov L.E. // Proc. 29th Internat. Electric Propulsion Confer. Princeton, 2005. Paper IEPC-2005-185.
  15. Semenkin A.V. // Proc. 23rd Internat. Electric Propulsion Confer. Seattle, 1993. Paper IEPC 93-231.
  16. Семенкин А.В. Сборник научных трудов ЦНИИмаш. Королев., 2006. С. 93.
  17. Garkusha V., Kochergin A., Semenkin A. Tverdokhlebov S. // Proc. 25th Internat. Electric Propulsion Confer. Cleveland, 1997. Paper IEPC-1997-106.
  18. Semenkin A., Tverdokhlebov S., Solodukhin A., Zakharenkov L. // Proc. Internat. Electric Propulsion Confer. Florence, 2007. Paper IEPC-2007-128.
  19. Морозов А.И. Исследование стационарного электромагнитного ускорения плазмы: Дис. … д-ра физико-математич. наук. М.: ИАЭ им. И.В Курчатова, 1965.
  20. Морозов А.И. // ДАН. 1965. Т. 163. С. 1363.
  21. Salz А., Meyerand R., Lary E. // Bull. American Phys. Soc. 1962. Ser. 11. V. 8. P. 441.
  22. Seikel G., Reshotko E. // Bull. American Phys. Soc. 1962. Ser. 11. V. 7. P. 414.
  23. Lary C., Meyerand R.G., Glastonbury Jr., Salz F. // USA patent # 3 155 858. Nov. 3, 1964.
  24. Ким В.П. // ЖТФ. 2015. Т. 85. С. 45.
  25. Janes G.S., Dotson J. // Proc. 5-th Sympos. eng. aspects magnetohydrodynamics. Massachusets Inst. Techn., Camdridge, Mass. 1964. P. 235.
  26. Janes G., Lowder R. // Phys. Fluids. 1966. V. 9. P.1115.
  27. Арцимович Л.А., Андронов И.М., Есипчук Ю.В., Барсуков Н.А., Козубский К.Н., Левченко Ю.М., Михайличенко В.А., Морозов А.И., Петров Е.М., Романовский М.К.,, Рылов Ю.П., Снгарский Р.К., Тилинин Г.Н., Трифонов Ю.В., Трофимов А.В., Ходненко В.П., Шаров Ю.А., Щепкин Г.Я. // Космические исслед. 1974. Т. 12. С. 451.
  28. Архипов А.С., Ким В.П., Сидоренко Е.К. Стационарные плазменные двигатели Морозова. М.: МАИ, 2012.
  29. Морозов А.И. Плазменные ускорители / Под ред. Л.А. Арцимовича. М.: Машиностроение, 1973. С. 85.
  30. Морозов А.И., Есипчук Ю.В., Капулкин А.М., Невровский В.А., Смирнов В.А. // ЖТФ, 1973. Т.43. Вып. 5. С. 972.
  31. Ким В.П., Попов Г.А., Шилов Е.А., Козубский К.Н., Приданников С.Ю. // Космическая техника и технологии. 2023. № 4(43). С. 55.
  32. Dan L., Myers R.M., Lemmer K.M., Kolbeck J., Keidar M., Koizumi H., Liang H., Yu D., Schönherr T., del Amo J.G., Choe W., Albertoni R., Hoskins A., Yan Sh., Hart W., Hofer R.R., Funaki I., Lovtsov A., Polzin K., Olshanskii A., Duchemin O. IEPC-2017 // Proc. 35th Internat. Electric Propulsion Confer. Atlanta, 2017. Paper -242.
  33. Абраменков Г.В., Вертаков Н.М., Дронов П.А. Каплин М.А., Приданников С.Ю. // Космическая техника и технологии. 2023. № 4 (43). С. 36.
  34. Демьяненко В.Н., Зубков И.П., Лебедев С.В., Морозов А.И. Препринт ИАЭ. № 2934. М.: ИАЭ, 1967.
  35. Бугрова А.И., Версоцкий В.С., Харчевников В.К. // ЖТФ. 1980. Т. 50. С. 2238.
  36. Бишаев А.М., Ким В.П. // ЖТФ. 1978. Т. 48. С. 1853.
  37. Бишаев А.М., Ким В.П. // Источники и ускорители плазмы. Харьков: ХАИ, 1981. № 5. С. 3.
  38. Ким В.П. // Физика плазмы. 2017. Т. 43. С. 406.
  39. Морозов А.И. // ПМТФ.1968. № 3. С. 19.
  40. Егоров В.В., Ким В.П., Семенов А.А., Шкарбан И.И. Ионные инжекторы и плазменные ускорители / Ред. А.И. Морозов и Н.Н. Семашко. M.: Энергоатомиздат, 1990. С. 56.
  41. Морозов А.И., Есипчук Ю.В., Тилинин Г.Н, Трофимов А., Шаров Ю.А., Щепкин Г.Я. // ЖТФ. 1972. Т. 42. С. 54.
  42. Морозов А.И., Есипчук Ю.В., Капулкин А.М., Невровский В.А., Смирнов В.А. // ЖТФ. 1973. Т. 43. С. 972.
  43. Есипчук Ю.В., Тилинин Г.Н. // ЖТФ. 1976. Т. 46. С. 718.
  44. Тилинин Г.Н. // ЖТФ. 1977. Т. 47. С. 1684.
  45. Белан Н.В., Ким В.П., Оранский А.И., Тихонов В.Б. Стационарные плазменные двигатели. Харьков: ХАИ, 1989.
  46. Бугрова А.И., Ким В.П. Плазменные ускорители и ионные инжекторы / Ред. Н.П. Козлов и А.И. Морозов. М., 1984. С. 107.
  47. Кim V. // J. Propulsion Power. 1998. V. 14. P. 736.
  48. Приданников С.Ю. Исследование характеристик стационарных плазменных двигателей при длительной работе: Дис. … канд. технич. наук. Калининград: Российский государственный университет, 2003.
  49. Mitrofanova O.A., Gnizdor R.Yu. // Proc. 33rd Internat. Electric Propulsion Confer. Washington, D.C., 2013. Paper IEPC-2013-51.
  50. Ким В.П., Гниздор Р.Ю., Ермошкин Ю.М., Меркурьев Д.В., Приданников С. Ю. // Поверхность. 2018. № 3. С. 18.
  51. Гаркуша В.И., Лесков Л.В., Ляпин Е.А. Плазменные ускорители и ионные инжекторы / Ред. А.И. Морозов, Н.Н. Семашко. М.: Наука, 1984. С. 129.
  52. Ляпин Е.А., Семенкин А.В. Ионные инжекторы и плазменные ускорители / Ред. А.И. Морозов, Н.Н. Семашко. М.: Энергоатомиздат, 1990. С. 20.
  53. Семенкин А.В. // Космонавтика и ракетостроение. М.: ЦНИИМАШ, 2004. Вып. 1(34). С. 5.
  54. Mikellides I.G., Katz I, Hofer R.R, Goebel D.M., de Grys K., Mathers A. // Phys. Plasmas. 2011. V. 18. P. 033501.
  55. Hofer R., Kamhawi H., Herman D., Polk J., Snyder J, Mikellides I., Huang W., Myers J., Yim J., Williams G., Ortega A., Jorns B., Sekerak M., Griffiths Ch., Shastry R., Haag Th., Verhey T., Gilliam B., Katz I., Goebel D, Anderson J., Gilland J, Clayman L. // Proc. 30th Internat. Symp. Space Technology and Science and 34th Internat. Electric Propulsion Confer. and 6th Nano-satellite Symp. Kobe, 2015. Paper IEPC-2015-186 /ISTS-2015-b-186.
  56. Conversano R.W., Goebel D.M., Hofer R.R., Mikellides I.G., Katz I., Wirz R.E. // Proc. 30th Internat. Symp. Space Technology and Science and 34th Internat. Electric Propulsion Confer. and 6th Nano-satellite Symp. Kobe, 2015. Paper IEPC-2015-100/ISTS-2015-b-100.
  57. Ким В.П., Архипов А.С., А. М. Бишаев А. М., Меркурьев Д. В., Сидоренко Е. К. // Физика плазмы. 2014. Т. 40. С. 937.
  58. Lobbia R.B., Ortega A.L., Reilly S., Conversano R.W., Mikellides I.G. // Proc. 36th Internat. Electric Propulsion Confer. Vienna, 2019. Paper IEPC-2019-298.
  59. Морозов А.И. Плазменные ускорители / Ред. Л.А. Арцимович. М.: Машиностроение, 1973. С. 85.
  60. Janhunen S., Smolyakov A., Chapurin O., D. Sydorenko D., Kaganovich I., Raitses Ye. // Phys. Plasmas. 2018. V. 25. P. 011608.
  61. Boeuf P. // Phys. Plasmas. 2019. V. 26. P. 072113. doi: 10.1063/1.510216.
  62. Taccogna F., Garrigues L. // Revs. Modern Plasma Phys. 2019. V. 3. P. 12. doi: 10.1007/s41614-019-0033-113.
  63. Chernyshev T., Krivoruchko D. // Plasma Sources Sci. Technol. 2022. V. 31. P. 015001. doi: 10.1088/1361-6595/ac4179.
  64. Ким В.П., Гниздор Р.Ю., Грдличко Д.П., Меркурьев Д.В., Митрофанова О.А., Смирнов П.Г., Шилов Е.А., Захарченко В.С. // Поверхность. 2018. № 12. С. 101.
  65. Shashkov A.S., Lovtsov A.S. // Proc. 36th Internat. Electric Propulsion Confer., Vienna, 2019. Paper IEPC-2019-392.
  66. Goebel D.N. Hall thruster with magnetic discharge chamber and conductive coatings. US patent No. 10,082,133 B2 dated Sep.25, 2018.
  67. Sekerak M.J., Hofer R., Polk J.E, Jorns B.A, I.G. Mikellides I.G. // Proc. 30th Internat. Symp. Space Technology and Science 34th Internat. Electric Propulsio Confer. and 6th Nano-satellite Symp. Hyogo-Kobe, Japan, 2015. Paper IEPC-2015-155/ ISTS 2015-b-155.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of A.V. Zharinov’s experiment (a) and general view of the ion beam emerging from the plasma source (b): 1 – plasma source, 2 – source exit slit, 3–5 – design elements [6, 7].

下载 (94KB)
3. Fig. 2. Scheme of the DAS in accordance with Zharinov’s invention: 1 – anode, 2 – magnetic system, 3 – power source, 4 – cathode-neutralizer [7].

下载 (80KB)
4. Fig. 3. Design of a typical two-stage laboratory model of a DAS: 1 – anode of the 1st stage, 2 – cathode of the 1st stage – anode of the 2nd stage, 3 – discharge chamber, which could be used as the cathode of the 2nd stage, 4 – poles of the magnetic system, 5–10 – structural elements, 11 – tube for feeding the RV [6, 7].

下载 (166KB)
5. Fig. 4. Dependence of the flow rates of a two-stage DAS on the accelerating voltage at the second stage (○, ∇ – bismuth, × – recalculation for xenon based on data for bismuth) [6, 7].

下载 (73KB)
6. Fig. 5. Structural diagram of the D-55 type DAS: 1 – anode, 2 – magnetic system, 3 – discharge chamber, 4 – insulator) [6, 7].

下载 (127KB)
7. Fig. 6. Equipotentials of magnetic field lines (Ψ=const) for SPD, proposed by Morozov [6, 7].

下载 (241KB)
8. Fig. 7. Schematic diagram of an ion accelerator in accordance with US Patent No. 3,155,858: 2 – magnetic system, 4 and 6 – magnetic core elements, 8 – plasma, 9 – dielectric coatings, 10 – plasma or ion source, 12 – tube for feeding the ion source into the working channel, 13 – plasma source housing, 16 – electron source [23].

下载 (113KB)
9. Fig. 8. General view of the experimental model SPD-60, tested for the first time in space: 1 – acceleration channel, 2 – discharge chamber, 3 – anode-gas distributor, 4, 5 – outer and inner (central) poles of the magnetic system, respectively, 6 – magnetization coil, 7 – magnetic circuit elements, 8 – gas-discharge cathode-neutralizer, 9 – gas-electric isolation [6, 7].

下载 (159KB)
10. Fig. 9. Experimental ion magnetron used by A.V. Zharinov's team to study ionization and acceleration of thallium ion flows in E × B discharge: 1 – vacuum chamber, 2 – magnetization coils creating a uniform longitudinal magnetic field in the working volume of the magnetron, 3 – gas-discharge plasma sources with output tubes with a diameter of 10 mm, used as discharge anodes, 4 – mounting flanges, 5 – electrostatic screens, 6 – ion collector with an internal diameter of 280 mm, cooled with water and serving as the discharge cathode) [6, 7].

下载 (168KB)
11. Fig. 10. Radial distributions of the potential of a “floating” probe in a magnetron discharge with a voltage of 4 kV and a magnetic induction of 0.15 T [1, 10] (● – without an ion beam, × – with an ion beam).

下载 (96KB)
12. Fig. 11. Function f (Pi) [24].

下载 (47KB)
13. Fig. 12. Picture of magnetic field lines (a) and distribution of electron temperature Te (b), probe “floating” potential (c), ionization rate Qi (d), electron concentration ne (d), plasma potential and directed ion currents (e) in the accelerating channel of the LM-1 methodical model, operating at a discharge voltage of 200 V and a xenon flow rate through the accelerating channel of 3 mg/s [45].

下载 (268KB)
14. Fig. 13. Distributions of the radial component Br of magnetic induction, longitudinal component Ez of electric field strength and directional component Jiz of total ion current and its ratio to discharge current Jd along the middle surface of the acceleration channel [46].

下载 (118KB)
15. Fig. 14. Schematic diagram of the magnetic field magnetometer, the configuration of the magnetic field lines and the distribution of magnetic induction along the middle surface of the magnetic field magnetometer, which can be obtained with its help: 1 – outer magnetization coil, 2 – outer magnetic shield, 3 – inner magnetic shield, 4 – central magnetization coil, 5 – central core of the magnetic system, Jw – relative ampere-turns of the magnetization coils, – the proportion of the magnetic flux passing, starting from the axis to a given field line, – relative distribution of magnetic induction along the middle surface of a possible magnetic field magnetometer [7].

下载 (126KB)
16. Fig. 15. Scheme of distributions of magnetic induction and electric field in the discharge of the SPD with the maximum of the distribution of magnetic induction removed from the CC.

下载 (90KB)
17. Fig. 16. Wear pattern of the output parts of the SPD-100 discharge chamber wall for different engine samples (a) and the design diagram of the SPD-100 (b): 1 – anode; 2 – cathode; 3 – discharge chamber; 4–6 – magnetic system elements; 7–13 – engine design elements, H – deviation of the profiles of the output parts of the discharge chamber walls due to wear of the discharge chamber walls after the engine has operated for the service life shown in the legend, L – distance from the output ends of the discharge chamber walls in the direction of the anode, PIN – point on the boundary of the inner wall profile with a sharp slowdown in its wear after 2000 hours of operation, PE – point on the boundary of the outer wall profile with a sharp slowdown in its wear after 2000 hours of operation. The dashed lines in the figure show the pole plane [50].

下载 (300KB)
18. Fig. 17. Experimental model D-55 with variable position of the anode and magnetic screen: 1 – core of the central coil of the magnetic system, 2 – anode-gas distributor, 3 – discharge chamber housing, 4 – replaceable ring for adjusting the position of the anode relative to the discharge chamber and magnetic system, 5 – magnetic screen, 6 – heat-resistant inserts made of non-magnetic material, 7, 8 – poles of the magnetic system, 9 – rings for protecting the poles made of non-magnetic material resistant to ion sputtering.

下载 (167KB)
19. Fig. 18. The rate of erosion of the walls of the discharge chamber of the D-55 model during its operation on xenon with a discharge voltage of 300 V at different distances l/l0 of the ends of the anode from the plane of the poles [53].

下载 (53KB)
20. Fig. 19. Picture of wear of the walls of the SPD-100 engine during its service life tests with a diagram of the weakly wearing output parts of the walls and the break points of the wall profiles after 2000 hours of operation.

下载 (171KB)
21. Fig. 20. Scheme of “magnetic shielding” of the walls of the discharge chamber, where φ is the plasma potential, Ud is the discharge voltage, E is the electric field strength, E⏊ is the component of the electric field strength normal to the line of force, B is the magnetic induction) [55].

下载 (58KB)
22. Fig. 21. Picture of magnetic field lines and distribution of magnetic induction along the middle surface of the acceleration channel in LM-2) [7].

下载 (308KB)
23. Fig. 22. Distribution of magnetic induction along the middle surface of the magnetic field for different options 1, 2 and 3 of gaps between the ends of the magnetic screens and the poles.

下载 (90KB)
24. Fig. 23. Distributions of plasma parameters in the LM-2 SPT for different distributions of magnetic induction along the middle surface of the UC of this model [7]: “floating” potentials φ0 of the probe and plasma φpl (a); ion current density Ji on the probe (b).

下载 (145KB)
25. Fig. 24. Distributions of local plasma parameters along the middle surface of the accelerator in LM-2 with an outer diameter of the acceleration channel of about 100 mm, operating on xenon at a discharge voltage of 700 V and a mass flow rate of 2.5 mg/s [38]: (1 is the plasma potential φ(z), 2 is the electric field strength, 3 is the density of the excess space charge, 4 is the radial component Br(z) of the magnetic induction along the middle surface of the accelerator, Be is the value of the magnetic induction at the conditional boundary of the layer on the anode side).

下载 (170KB)
26. Fig. 25. Relative distributions of magnetic induction B/Bmax along the middle surface of the UK and relative distributions of plasma potential φ/Ud and electron temperature along the outer part of the accelerated ion flow at a constant distance from the axis of the D-55 engine at different discharge voltages Ud (coordinate “0” along the Z axis corresponds to the output plane of the UK) [53].

下载 (83KB)
27. Fig. 26. Dependence of the ratio of the value of magnetic induction Be at the point where the “boundary” magnetic field line intersects the middle surface of the VC to the maximum value of magnetic induction Bmax on this surface on the xenon flow density through the VC of different second-generation SPTs operating in different modes [63].

下载 (88KB)
28. Fig. 27. Normalized thickness of the ZU depending on the xenon flow density in the UC of various second-generation SPTs in different modes of their operation (the dotted lines in this figure show the range of changes in the experimental data, and the solid line corresponds to dependence (25) [64].

下载 (96KB)
29. Fig. 28. Dependence of the specific impulse of the laboratory model SPD-140 on the xenon flow rate through the UK at a discharge voltage of 300 V. Here, the specific impulse of the thrust is a traditional engine parameter characterizing the efficiency of the acceleration of RV particles in rocket engines, calculated from the directional component of the average mass velocity V of the outflow of the named particles from the engine, determined from measurements of the jet thrust as , where g is the acceleration of free fall of bodies on Earth) [7].

下载 (80KB)
30. Fig. 29. A possible version of the MSME scheme and a picture of the magnetic field lines and the distribution of the radial component of magnetic induction along the middle surface of the IC, the possible boundaries of which are shown by a dashed line: 1 – magnetic screen, 2 – magnetic system, 3 – possible position of the charger.

下载 (182KB)
31. Fig. 30. Possible scheme of displacement of output ends and their shape, as well as the picture of magnetic lines of force in the output part of the working channel.

下载 (117KB)
32. Fig. 31. Photo of the LM SPD-70V variant with a stainless steel plate pressing the removable part of the inner wall of the RK after 200-hour erosion tests.

下载 (153KB)
33. Fig. 32. General view of the manufactured EM NT-1000.

下载 (123KB)
34. Fig. 33. View of the end surface of EM NT-1000 after 200-hour erosion tests.

下载 (268KB)
35. Fig. 34. Schematic diagram of a typical HDME and magnetic field lines in such an engine: 1 – anode, 2 – external magnetic screen, 3 – magnetic circuit element, 4 – external magnetic pole, 5 – internal magnetic screen, 6 – internal magnetic pole, 7 – base of the discharge chamber, 8 – extended output part of the discharge chamber) [66].

下载 (259KB)

版权所有 © Russian Academy of Sciences, 2024