TRENDS AND ACHIEVEMENTS IN THE STUDY OF THE 𝑝–11B FUSION: A REVIEW

Cover Page

Cite item

Full Text

Abstract

The possible use of the aneutronic 𝑝–11B reaction is of interest from the viewpoint of obtaining clean energy. Here, we consider the current studies of the different schemes of implementing this reaction and present the estimates of the limiting energy gain in the plasma at different system parameters. The possibilities of increasing the reaction rate compared to the Maxwellian plasma are discussed. The effect of the accumulation of the alpha particles and the possible means of decreasing it are analyzed.

About the authors

E. G Vovkivsky

Bauman Moscow State Technical University

Moscow, Russia

A. Yu Chirkov

Bauman Moscow State Technical University

Email: chirkov@bmstu.ru
Moscow, Russia

References

  1. McKenzie W., Batani D., Mehlhorn T.A., Margarone D., Belloni F., Campbell E.M., Woodruff S., Kirchhoff J., Paterson A., Pikuz S., Hora H. // J. Fusion Energy. 2023. V. 42. P. 17. https://doi.org/10.1007/s10894-023-00349-9
  2. Weaver T., Zimmerman G., Wood L. Exotic CTR fuel: Non-thermal effects and laser fusion application. Lawrence Livermore Laboratory. California Univ. Livermore. 1973. Report UCRL-74938.
  3. Moreau D.C. // Nuclear Fusion. 1977. V. 17. P. 13. https://doi.org/10.1088/0029-5515/17/1/002
  4. Кукушкин А.Б., Коган В.И. // Физика плазмы. 1979. Т. 5. С. 1264.
  5. McNally J.R. // Nuclear Technol. – Fusion. 1982. V. 2. P. 9. https://doi.org/10.13182/FST2-1-9
  6. Feldbacher R. Nuclear Reaction Cross Sections and Reactivity Parameter. IAEA, 1987. https://www-nds.iaea.org/publications/nds/iaea-nds-0086/
  7. Nevins W.M. // J. Fusion Energy. 1998. V. 17. P. 25. https://doi.org/10.1023/A:1022513215080
  8. Чирков А.Ю. // Ядерная физика и инжиниринг. 2013. Т. 4. С. 1050. https://doi.org/10.1134/S2079562913120075
  9. nd International Workshop on Proton-Boron Fusion, Rome, Italy, 5–8 September 2022. https://agenda.infn.it/event/30291/timetable/ (дата обращения 12.11.2024).
  10. Lerner E.J., Hassan S.M., KaramitsosZivkovic I., Fritsch R. // Phys. Plasmas. 2023. V. 30. P. 120602. https://doi.org/10.1063/5.0170216
  11. Mehlhorn T.A. // Phys. Plasmas. 2024. V. 31. P. 020602. https://doi.org/10.1063/5.0170661
  12. Putvinski S.V., Ryutov D.D, Yushmanov P.N. // Nuclear Fusion. 2019. V. 59. P. 076018. https://doi.org/10.1088/1741-4326/ab1a60
  13. Kolmes E.J., Ochs I.E., Fisch N.J. // Phys. Plasmas. 2022. V. 29. P. 110701. https://doi.org/10.1063/5.0119434
  14. Cai J., Xie H., Li Y., Tuszewski M., Zhou H., Chen P. // Fusion Sci. Technol. 2022. V. 78. P. 149. https://doi.org/10.1080/15361055.2021.1964309
  15. Chirkov А.Yu., Kazakov K.D. // Plasma. 2023. V. 6. P. 379. https://doi.org/10.3390/plasma6030026
  16. Cavaignac J.F., Longequeue N., Honda T. // Nuclear Phys. A. 1971. V. 167. P. 207.https://doi.org/10.1016/0375-9474(71)90594-X
  17. Becker H.W., Rolfs C., Trautvetter H.P. // Zeitschrift für Physik A. Atomic Nuclei. 1987. V. 327. P. 341. https://doi.org/10.1007/bf01284459
  18. Yamashita Y., Kudo Y. // Nuclear Phys. A. 1995. V. 589. P. 460. https://doi.org/10.1016/0375-9474(95)00069-D
  19. Nevins W.M., Swain R. // Nuclear Fusion. 2000. V. 40. P. 865. https://doi.org/10.1088/0029-5515/40/4/310
  20. Sikora M.H., Weller H.R. // J. Fusion Energ. 2016. V. 35. P. 538. https://doi.org/10.1007/s10894-016-0069-y
  21. Tentori A., Belloni F. // Nuclear Fusion. 2023. V. 63. P. 086001. https://doi.org/10.1088/1741-4326/acda4b
  22. Dmitriev V.F. // Phys. Atomic Nuclei. 2006. V. 69. P. 1461. https://doi.org/10.1134/S1063778806090043
  23. Dmitriev V.F. // Phys. Atomic Nuclei. 2009. V. 72. P. 1165. https://doi.org/10.1134/S1063778809070084
  24. Ahmed M.W., Weller H.R. // J. Fusion Energ. 2014. V. 33. P. 103. https://doi.org/10.1007/s10894-013-9643-8
  25. Stave S., Ahmed M.W., France R.H., Henshaw S.S., Müller B., Perdue B.A., Prior R.M., Spraker M.C., Weller H.R. // Phys. Lett. B. 2011. V. 696. P. 26. https://doi.org/10.1016/j.physletb.2010.12.015
  26. Spraker M.C., Ahmed M.W., Blackston M.A., Brown N., France R.H., Henshaw S.S., Perdue B.A., Prior R.M., Seo P.N., Stave S. et al. // J. Fusion Energ. 2012. V. 31. P. 357. https://doi.org/10.1007/s10894-011-9473-5
  27. Belyaev V.S., Krainov V.P., Zagreev B.V., Matafonov A.P. // Phys. Atomic Nuclei. 2015. V. 78. P. 537. https://doi.org/10.1134/S1063778815040031
  28. Belyaev V.S., Matafonov A.P., Vinogradov V.I., Krainov V.P., Lisitsa V.S., Roussetski A.S., Ignatyev G.N., Andrianov V.P. // Phys. Rev. E. 2005. V. 72. P. 026406. https://doi.org/10.1103/PhysRevE.72.026406
  29. Беляев В.С., Матафонов А.П., Андреев С.Н., Тараканов В.П., Крайнов В.П., Лисица В.С., Кедров А.Ю., Загреев Б.В., Русецкий А.С., Борисенко Н.Г., Громов А.И., Лобанов А.В. // Ядерная физика. 2022. Т. 85. С. 34.
  30. Labaune C., Baccou C., Depierreux S., Goyon C., Loisel G., Yahia V., Rafelski J. // Nature Communications. 2013. V. 4. P. 2506. https://doi.org/10.1038/ncomms3506
  31. Picciotto A., Margarone D., Velyhan A., Bellutti P., Krasa J., Szydlowsky A., Bertuccio G., Shi Y., Mangione A., Prokupek J. et al. // Phys. Rev. X. 2014. V. 4. P. 031030. https://doi.org/10.1103/PhysRevX.4.031030
  32. Giuffrida L., Belloni F., Margarone D., Petringa G., Milluzzo G., Scuderi V., Velyhan A., Rosinski M., Picciotto A., Kucharik M. et al. // Phys. Rev. E. 2020. V. 101. P. 013204. https://doi.org/10.1103/PhysRevE.101.013204
  33. Margarone D., Morace A., Bonvalet J., Abe Y., Kantarelou V., Raffestin D., Giuffrida L., Nicolai P., Tosca M., Picciotto A. et al. // Front. Phys. 2020. V. 8. P. 343. https://doi.org/10.3389/fphy.2020.00343
  34. Bonvalet J., Nicolaï Ph., Raffestin D., D’humieres E., Batani D., Tikhonchuk V., Kantarelou V., Giuffrida L., Tosca M., Korn G. et al. // Phys. Rev. E. 2021. V. 103. P. 053202. https://doi.org/10.1103/PhysRevE.103.053202
  35. Margarone D., Bonvalet J., Giuffrida L., Morace A., Kantarelou V., Tosca M., Raffestin D., Nicolai P., Picciotto A., Abe Y. et al. // Appl. Sci. 2022. V. 12. P. 1444. https://doi.org/10.3390/app12031444
  36. Istokskaia V., Tosca M., Giuffrida L., Psikal J., Grepl F., Kantarelou V., Stancek S., Di Siena S., Hadjikyriacou A., Mcilvenny A., Levy Y., Huynh J., Cimrman M., Pleskunov P., Nikitin D., Choukourov A., Belloni F., Picciotto A., Kar S., Borghesi M., Lucianetti A., Mocek T., Margarone D. // Communications Phys. 2023. V. 6. P. 27. https://doi.org/10.1038/s42005-023-01135-x
  37. Miley G.H., Hora H. // Nuclear Fusion. 1998. V. 38. P. 1113. https://doi.org/10.1088/0029-5515/38/7/413
  38. Miley G.H., Hora H., Cicchitelli L., Kasotakis G.V., Stening R.J. // Fusion Technology. 1991. V. 19. P. 43. https://doi.org/10.13182/FST91-A29314
  39. Hora H., Miley G.H., Ghoranneviss M., Malekynia B., Azizic N., He Xian-Tu. // Energy Environ. Sci. 2010. V. 3. P. 479. https://doi.org/10.1039/B904609G
  40. Eliezer S., Hora H., Korn G., Nissim N., Martinez Val J.M. // Phys. Plasmas. 2016. V. 23. P. 050704. https://doi.org/10.1063/1.4950824
  41. Eliezer S., Martinez-Val J.M. // Laser Particle Beams. 2022. V. 38. P. 39. https://doi.org/10.1017/s0263034619000818
  42. Shmatov M.L. // Phys. Plasmas. 2016. V. 23. P. 050704; Phys. Plasmas. 2016. V. 23. P. 094703. https://doi.org/10.1063/1.4963006
  43. Shmatov M.L. // Laser Particle Beam 2022. V. 2022. P. 7473118. https://doi.org/10.1155/2022/7473118
  44. Belloni F., Margarone D., Picciotto A., Schillaci F., Giuffrida L. // Phys. Plasmas. 2018. V. 25. P. 020701. https://doi.org/10.1063/1.5007923
  45. Belloni F. // Plasma Phys. Controlled Fusion. 2021. V. 63. P. 055020. https://doi.org/10.1088/1361-6587/abf255
  46. Belloni F. // Laser Particle Beams 2022. V. 2022. P. 3952779. https://doi.org/10.1155/2022/3952779
  47. Hora H., Eliezer S., Nissim N., Lalousis P. // Matter and Radiation at Extremes. 2017. V. 2. P. 177. https://doi.org/10.1016/j.mre.2017.05.001
  48. Fujioka S., Zhang Z., Ishihara K., Shigemori K., Hironaka Y., Johzaki T., Sunahara A., Yamamoto N., Nakashima H., Watanabe T. et al. // Sci. Rep. 2013. V. 3. P. 1170. https://doi.org/10.1038/srep01170
  49. Mehlhorn T.A., Labun L., Hegelich B.M., Margarone D., Gu M.F., Batani D., Campbell E.M., Hu S.X. // Laser Particle Beams. 2022. V. 2022. P. 2355629. https://doi.org/10.1155/2022/2355629
  50. Ribeyre X., Capdessus R., Wheeler J., d’Humières E., Mourou G. // Sci. Reps. 2022. V. 12. P. 4665. https://doi.org/10.1038/s41598-022-08433-4
  51. Belyaev V.S., Vinogradov V.I., Matafonov A.P., Rybakov S.M., Krainov V.P., Lisitsa V.S., Andrianov V.P., Ignatiev G.N., Bushuev V.S., Gromov A.I., Rusetsky A.S., Dravin V.A. // Phys. Atomic Nuclei. 2009. V. 72. P. 1077. https://doi.org/10.1134/S1063778809070011
  52. Gus’kov S.Yu., Korneev F.A. // JETP Lett. 2016. V. 104. P. 1. https://doi.org/10.1134/S0021364016130117
  53. Andreev S.N., Matafonov A.P., Tarakanov V.P., Belyaev V.S., Kedrov A.Yu., Krainov V.P., Mukhanov S.A., Lobanov A.V. // Phys. Atomic Nuclei. 2023. V. 86. P. 406. https://doi.org/10.1134/S1063778823040038
  54. Dubinov A.E., Kornilova I.Yu., Selemir V.D. // Uspekhi Fizicheskikh Nauk. 2002. V. 172. P. 1225. https://doi.org/10.3367/UFNr.0172.200211a.1225
  55. Macchi A., Borghesi M., Passoni M. // Rev. Mod. Phys. 2013. V. 85. P. 751. https://doi.org/10.1103/RevModPhys.85.751
  56. Bychenkov V.Yu., Brantov A.V., Govras E.A., Kovalev V.F. // Uspekhi Fizicheskikh Nauk. 2015. V. 185. P. 77. https://doi.org/10.3367/UFNr.0185.201501f.0077
  57. Magee R.M., Ogawa K., Tajima T., Allfrey I., Gota H., McCarroll P., Ohdachi S., Isobe M., Kamio S., Klumper V. et al. // Nature Commun. 2023. V. 14. P. 955. https://doi.org/10.1038/s41467-023-36655-1
  58. Rostoker N., Binderbauer M.W., Monkhorst H.J. // Science. 1997. V. 278. P. 1419. https://doi.org/10.1126/science.278.5342.1419
  59. Volosov V.I. // Nuclear Fusion. 2006. V. 46. P. 820. https://doi.org/10.1088/0029-5515/46/8/007
  60. Nevins W.M. // Science. 1998. V. 281. P. 307. https://doi.org/10.1126/science.281.5375.307a
  61. Moustaizis S., Daponta C., Eliezer S., Henis Z., Lalousis P., Nissim N., Schweitzer Y. // J. Instrumentation. 2024. V. 19. P. C01015. https://doi.org/10.1088/1748-0221/19/01/C01015
  62. Bone T., Sedwick R. // Acta Astronautica. 2024. V. 220. P. 356. https://doi.org/10.1016/j.actaastro.2024.04.040
  63. Liu M., Xie H., Wang Y., Dong J., Feng K., Gu X., Huang X., Jiang X., Li Y., Li Z. et al. // Phys. Plasmas. 2024. V. 31. P. 062507. https://doi.org/10.1063/5.0199112
  64. Rider T.H. // Phys. Plasmas. 1995. V. 2. P. 1853. https://doi.org/10.1063/1.871273
  65. Kurilenkov Yu.K., Oginov A.V., Tarakanov V.P., Gus’kov S.Yu., Samoylov I.S. // Phys. Rev. E. 2021. V. 103. P. 043208. https://doi.org/10.1103/PhysRevE.103.043208
  66. Kurilenkov Yu.K., Tarakanov V.P., Oginov A.V., Gus’kov S.Yu., Samoylov I.S. // Laser Particle Beams. 2023. V. 2023. P. 9563197. https://doi.org/10.1155/2023/9563197
  67. Wong A.Y., Shih C.C. // Plasma. 2022. V. 5. P. 176. https://doi.org/10.3390/plasma5010013
  68. Hurricane O.A., Callahan D.A., Casey D.T., Celliers P.M., Cerjan C., Dewald E.L., Dittrich T.R., Döppner T., Hinkel D.E., Hopkins L.F.B. et al. // Nature. 2014. V. 506. P. 343. https://doi.org/10.1038/nature13008
  69. Yager-Elorriaga D.A., Gomez M.R., Ruiz D.E., Slutz S.A., Harvey-Thompson A.J., Jennings C.A., Knapp P.F., Schmit P.F., Weis M.R., Awe T.J. et al. // Nuclear Fusion. 2022. V. 62. P. 042015. https://doi.org/10.1088/1741-4326/ac2dbe
  70. Гаранин С.Ф. Физические процессы в системах МАГО-MTF. Саров: РФЯЦ-ВНИИЭФ, 2012.
  71. Ghorbanpour E., Belloni F. // Front. Phys. 2024. V. 12. P. 1405435. https://doi.org/10.3389/fphy.2024.1405435
  72. Ghorbanpour E., Ghasemizad A., Khoshbinfar S. // Phys. Particles Nuclei Lett. 2020. V. 17. P. 809. https://doi.org/10.1134/S1547477120060126
  73. Mahdavi M., Bakhtiyari M., Najafi A. // Internat. J. Mod. Phys. B. 2023. V. 37. P. 2350142. https://doi.org/10.1142/S0217979223501424
  74. Khademloo E., Mahdavi M., Azadboni F.K. // Indian J. Phys. 2024. V. 98. P. 4543. https://doi.org/10.1007/s12648-024-03193-5
  75. Auluck S., Kubes P., Paduch М., Sadowski M.J., Krauz V.I., Lee S., Soto L., Scholz M., Miklaszewski R., Schmidt H. et al. // Plasma. 2021. V. 4. P. 450. https://doi.org/10.3390/plasma4030033
  76. Haruki T., Yousefi H.R., Sakai J.I. // Phys. Plasmas. 2010. V. 17. P. 032504. https://doi.org/10.1063/1.3318470
  77. Abolhasani S., Habibi M., Amrollahi R. // J. Fusion. Energ. 2013. V. 32. P. 189. https://doi.org/10.1007/s10894-012-9547-z
  78. Di Vita A. // European Phys. J. 2013. V. 67. P. 191. https://doi.org/10.1140/epjd/e2013-40096-3
  79. Scholz M., Kro´ K., Kulin A., Karpin L., Wo´jcikGargula A., Fitta M. // J. Fusion Energy. 2019. V. 38. P. 522. https://doi.org/0.1007/s10894-019-00225-5
  80. Lerner E.J., Hassan S.M., KaramitsosZivkovic I., Fritsch R. // J. Fusion Energy. 2023. V. 42. P. 7. https://doi.org/10.1007/s10894-023-00348-w; Correction // J. Fusion Energy. 2023. V. 42. P. 9. https://doi.org/10.1007/s10894-023-00348-w
  81. Vikhrev V.V., Korolev V.D. // Plasma Phys. Rep. 2007. V. 33. P. 356. https://doi.org/10.1134/S1063780X07050029
  82. Akel M., AL-Hawat S., Ahmad M., Ballul Y., Shaaban S. // Plasma. 2022. V. 5. P. 184. https://doi.org/10.3390/plasma5020014
  83. Shumlak U. // J. Appl. Phys. 2020. V. 127. P. 200901. https://doi.org/10.1063/5.0004228
  84. Shumlak U., Meier E.T., Levitt B.J. // Fusion Sci. Technol. 2024. V. 80. P. 1. https://doi.org/10.1080/15361055.2023.2198049
  85. Pikuz S.A., Sinars D.B., Shelkovenko T.A., Chandler K.M., Hammer D.A., Ivanenkov G.V., Stepniewski W., Skobelev I.Yu. // Phys. Rev. Lett. 2024. V. 89. P. 035003. https://doi.org/10.1103/PhysRevLett.89.035003
  86. Kroupp E., Stambulchik E., Starobinets A., Osin D., Fisher V.I., Alumot D., Maron Y., Davidovits S., Fisch N.J., Fruchtman A. // Phys. Rev. E. 2018. V. 97. P. 013202. https://doi.org/10.1103/PhysRevE.97.013202
  87. Davidovits S., Kroupp E., Stambulchik E., Maron Y. // Phys. Rev. E. 2021. V. 103. P. 063204. https://doi.org/10.1103/PhysRevE.103.063204
  88. Vikhrev V.V., Frolov A.Yu., Chirkov A.Yu. // J. Physics: Confer. Ser. 2019. V. 1370. P. 012026. https://doi.org/10.1088/1742-6596/1370/1/012026
  89. Chirkov A.Yu., Tokarev S.A. // Fusion Sci. Technology. 2023. V. 79. P. 413. https://doi.org/10.1080/15361055.2022. 2135337
  90. Son S., Fisch N.J. // Phys. Lett. A. 2004. V. 329. P. 76. https://doi.org/10.1016/j.physleta.2004.06.054
  91. Hosseini Motlagh S.N., Mohamadi Sh.S., Shamsi R. // J. Fusion Energy. 2008. V. 27. P. 161. https://doi.org/10.1007/s10894-007-9124-z
  92. Eliezer S., León P.T., Martinez-Val J.M., Fisher D.V. // Laser Particle Beams. 2003. V. 21. P. 599. https://doi.org/10.10170S0263034603214191
  93. Dzhavakhishvili D.I., Tsintsadze N.L. // Sov. Phys.– JETP. 1973. V. 37. P. 666. https://doi.org/10.1088/1741-4326/acee96
  94. Lavrinenko Y.S., Morozov I.V., Valuev I.A. // Contrib. Plasma Phys. 2024. V. 64. P. e202300158. https://doi.org/10.1002/ctpp.202300158
  95. Svensson R. // Astrophys. J. 1982. V. 258. P. 335. https://doi.org/10.1086/160082
  96. Li Z. // Phys. Plasmas. 2024. V. 31. P. 084701. https://doi.org/10.1063/5.0223575
  97. Basko M.M. // Nucl. Fusion. 1990. V. 30. P. 2443. https://doi.org/10.1088/0029-5515/30/12/001
  98. Zel’dovich Ya.B., Raizer Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York–London, 1966).
  99. Moseev D., Salewski M. // Phys. Plasmas. 2019. V. 26. P. 020901. https://doi.org/10.1063/1.5085429
  100. Xie H., Tan M., Luo D., Li Z., Bing L. // Plasma Phys. Control. Fusion. 2023. V. 65. P. 055019. https://doi.org/10.1088/1361-6587/acc8f9
  101. Kong H., Xie H., Bing L., Tan M., Luo D., Li Z., Sun J. // Plasma Phys. Control. Fusion. 2024. V. 66. P. 015009. https://doi.org/10.1088/1361-6587/ad1008
  102. Binderbauer M.W., Rostoker N. // J. Plasma Phys. 1996. V. 56. P. 451. https://doi.org/10.1017/S0022377800019413
  103. Tchórz P., Chodukowski T., Rosiński M., Borodziuk S., Szymański M., Dudžák R., Singh S., Krupka M., Burian T., Marchenko A. et al. // Phys. Plasmas. 2024. V. 31. P. 084503. https://doi.org/10.1063/5.0207108
  104. Putvinskii S.V. // Reviews of Plasma Physics. V. 18 / Ed. B. B. Kadomtsev. 1993. P. 239.
  105. Zhang D., Wang X., Dong C., Bao J., Cao J., Zhang W., Li D. // Phys. Plasmas. 2024. V. 31. P. 042509. https://doi.org/10.1063/5.0197259
  106. Baldwin D.E., Byers J.A., Chen Y.J., Kaiser T.B. // IAEA Internat. Confer. on Plasma Phys. Controlled Nuclear Fusion Research. Kyoto. Japan. 12 November 1986. IAEA. Vienna. Austria. 1986. P. 293.
  107. Shabrov N.V., Khvesjuk V.I. // Fusion Technology. 1994. V. 26. P. 117. https://doi.org/10.13182/FST94-A30335
  108. Khvesyuk V.I., Shabrov N.V., Lyakhov A.N. // Fusion Technol. 1995. V. 27. P. 406. https://doi.org/10.13182/FST95-A11947116
  109. Gudinetsky E., Miller T., Be’ery I., Barth I. // arXiv.2402.18687. 2024. https://doi.org/10.48550/arXiv.2402.18687
  110. Barth I., Friedland L., Sarid E., Shagalov A.G. // Phys. Rev. Lett. 2009. V. 103. P. 155001. https://doi.org/10.1103/PhysRevLett.103.155001
  111. Munirov V.R., Fisch N.J. // Phys. Rev. E. 2023. V. 107. P. 065205. https://doi.org/10.1103/PhysRevE.107.065205
  112. Ochs I.E., Mlodik M.E., Fisch N.J. // Phys. Plasmas. 2024. V. 31. P. 083303. https://doi.org/10.1063/5.0228464

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences