Non-equilibrium processes in a semiconductor laser based on AlAs/(Al,Ga)As/GaAs microcavity under electric pulses excitation
- 作者: Maksimov A.A.1, Filatov E.V.1, Filatov V.V.2, Tartakovskii I.I.1
 - 
							隶属关系: 
							
- Institute of Solid State Physics of the Russian Academy of Sciences
 - Semenov Federal Research Center of Chemical Physics, Branch in Chernogolovka
 
 - 期: 卷 87, 编号 2 (2023)
 - 页面: 182-188
 - 栏目: Articles
 - URL: https://clinpractice.ru/0367-6765/article/view/654475
 - DOI: https://doi.org/10.31857/S036767652270034X
 - EDN: https://elibrary.ru/AEHGMI
 - ID: 654475
 
如何引用文章
详细
Stimulated radiation with a high circular polarization degree in chiral semiconductor microcavities was studied in a wide temperature range. The kinetics of the spectra emission rearrangement in injection laser nanostructures during the action of a rectangular electric excitation pulse is studied in detail.
作者简介
A. Maksimov
Institute of Solid State Physics of the Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: maksimov@issp.ac.ru
				                					                																			                												                								Russia, 142432, Chernogolovka						
E. Filatov
Institute of Solid State Physics of the Russian Academy of Sciences
														Email: maksimov@issp.ac.ru
				                					                																			                												                								Russia, 142432, Chernogolovka						
V. Filatov
Semenov Federal Research Center of Chemical Physics, Branch in Chernogolovka
														Email: maksimov@issp.ac.ru
				                					                																			                												                								Russia, 142432, Chernogolovka						
I. Tartakovskii
Institute of Solid State Physics of the Russian Academy of Sciences
														Email: maksimov@issp.ac.ru
				                					                																			                												                								Russia, 142432, Chernogolovka						
参考
- Genevet P., Capasso F., Aieta F. et al. // Optica. 2017. V. 4. P. 139.
 - Hübener H., De Giovannini U., Schäfer C. et al. // Nature Mater. 2021. V. 20. P. 438.
 - Ando H., Sogawa T., Gotoh H. // Appl. Phys. Lett. 1998. V. 73. No. 5. P. 566.
 - Holub M., Bhattacharya P. // J. Phys. D. 2007. V. 40. Art. No. R179.
 - Chen J.-Y., Wong T.-M., Chang C.-W. et al. // Nature Nanotech. 2014. V. 9. P. 845.
 - Lindemann M., Xu G., Pusch T. et al. // Nature. 2019. V. 568. P. 212.
 - Žutić I., Xu G., Lindemann M. et al. // Solid State Commun. 2020. V. 316–317. Art. No. 113949.
 - Kopp V.I., Fan B., Vithana H.K.M. et al. // Opt. Lett. 1998. V. 23. P. 1707.
 - Ha N.Y., Ohtsuka Y., Jeong S.M. et al. // Nature. Mater. 2008. V. 7. P. 43.
 - Maksimov A.A., Tartakovskii I.I., Filatov E.V. et al. // Phys. Rev. B. 2014. V. 89. Art. No. 045316.
 - Lobanov S.V., Tikhodeev S.G., Gippius N.A. et al. // Phys. Rev. B. 2015. V. 92. Art. No. 205309.
 - Максимов А.А., Филатов Е.В., Тартаковский И.И. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 241; Maksimov A.A., Filatov E.V., Tartakovskii I.I. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 176.
 - Maksimov A.A., Filatov E.V., Tartakovskii I.I. et al. // Phys. Rev. Appl. 2022. V. 17. Art. No. L021001.
 - Максимов А.А., Филатов Е.В., Тартаковский И.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 4. С. 494; Maksimov A.A., Filatov E.V., Tartakovskii I.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 404.
 - Afromowitz M.F. // Solid State Commun. 1974. V. 15. P. 59.
 - Goñi A.R., Syassen K., Cardona M. // Phys. Rev. B. 1990. V. 41. No. 14. Art. No. 10104.
 - Goñi A.R., Cantarero A., Syassen K. et al. // Phys. Rev. B. 1990. V. 41. No. 14. Art. No. 10111.
 
补充文件
				
			
						
						
						
						
					






