Optical pumping of rubidium isotopes by Cr3+:BeAl2O4 laser radiation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the use of a Cr3+:BeAl2O4 laser in free-running operating as a source of emission for optical pumping rubidium alkali metal vapors. The use of dispersive elements in the composition of the laser cavity makes it possible to smoothly tune lasing wavelength and to realize generation at wavelengths corresponding to the D1 and D2 lines of the 85Rb and 87Rb isotopes. Optical pumping of rubidium isotopes by laser emission with wavelengths of 795 and 780 nm, respectively, is experimentally implemented, and their fluorescence is demonstrated. The question of using a wavelength-tunable laser in the method of spin-exchange optical pumping of noble gases is discussed.

作者简介

A. Antipov

Institute on Laser and Information Technologies of the Federal Scientific Research Centre
“Crystallography and photonics” of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: antiplit@yandex.ru
Russia, 140700, Shatura

A. Putilov

Institute on Laser and Information Technologies of the Federal Scientific Research Centre
“Crystallography and photonics” of Russian Academy of Sciences

Email: antiplit@yandex.ru
Russia, 140700, Shatura

A. Shepelev

Institute on Laser and Information Technologies of the Federal Scientific Research Centre
“Crystallography and photonics” of Russian Academy of Sciences

Email: antiplit@yandex.ru
Russia, 140700, Shatura

参考

  1. Григорьев Г.Ю., Набиев Ш.Ш. // Хим. физика. 2018. Т. 37. № 5. С. 3.
  2. Panayiotis N., Coffey A.M., Ranta K. et al. // J. Phys. Chem. B. 2014. V. 118. No. 18. P. 4809.
  3. Rohan S., John C., Wang Z. et al. // Sci. Reports. 2020. V. 10. P. 1.
  4. Albert M.S., Catesf G.D., Driehuyst B. et al. // Lett. Nature. 1994. V. 370. P. 199.
  5. Roos J., Mcadams H.P., Kaushik S.S. at al. // Magn. Res. Imaging Clin. North Amer. 2015. V. 23. No. 2. P. 217.
  6. Gaede H.C., Song Y.Q., Taylor R.E. at al. // Appl. Magn. Res. 1995. V. 8. P. 373.
  7. Григорьев Г.Ю., Лагутин А.С. // ЖТТ. 2022. Т. 92. № 9. С. 1277; Grigoriev G.Y., Lagutin A.S. // Tech. Phys. 2022. V. 67. No. 9. P. 1089.
  8. Happer W., Miron E., Schaefer S. et al. // Phys. Rev. A. 1984. V. 29. P. 3092.
  9. Appelt S., Ben-Amar Baranga A., Erickson C. et al. // Phys. Rev. A. 1998. V. 58. No. 2. P. 1412.
  10. Kelley M., Branca R. // Appl. Phys. 2021. V. 129. Art. No. 154901.
  11. Walker T., Happer W. // Rev. Mod. Phys. 1997. V. 69. No. 2. P. 629.
  12. Driehuys B., Cates G.D. et al. // Appl. Phys. Lett. 1996. V. 69. P. 1668.
  13. Nikolaou P., Whiting N., Eschmann N.A. et al. // J. Magn. Res. 2009. 197. P. 249.
  14. Демкин В., Демкин А., Шадрин М. // Фотоника. 2012. № 3. С. 33.
  15. Siddons P., Adams C.S., Ge C., Hughes I.G. // J. Physics B. 2008. V. 41. No. 15. Art. No. 155004.
  16. Banerjee A., Das D., Natarajan V. // Europhys. Lett. 2004. V. 65. No. 2. P. 172.
  17. Volodin B.L., Dolgy S.V., Melnik E.D., Downs E. // Opt. Lett. 2004. V. 29. No. 16. P. 1891.
  18. Whiting N., Nikolaou P., Eschmann N.A. et al. // Appl. Phys. B. 2012. V. 106. No. 4. P. 775.
  19. Антипов А.А., Путилов А.Г., Осипов А.В., Шепелев А.Е. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1593; Antipov A.A., Putilov A.G., Osipov A.V., Shepelev A.E. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 1359.
  20. Putilov A.G., Antipov A.A., Shepelev A.E. et al. // J. Phys. Conf. Ser. 2021. V. 1822. Art. No. 012016.
  21. Putilov A.G., Antipov A.A., Shepelev A.E. et al. // J. Phys. Conf. Ser. 2019. V. 1331. Art. No. 012016.
  22. https://steck.us/alkalidata/rubidium85numbers.pdf.
  23. https://steck.us/alkalidata/rubidium87numbers.pdf.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (154KB)
3.

下载 (1MB)
4.

下载 (73KB)
5.

下载 (360KB)
6.

下载 (755KB)

版权所有 © А.А. Антипов, А.Г. Путилов, А.Е. Шепелев, 2023