Characterization of vertically aligned carbon nanotubes by piezoresponse force microscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The piezoelectric properties of vertically aligned carbon nanotubes (CNTs) are characterized using the piezoresponse force microscopy method. Dependence of piezoelectric properties on the nitrogen concentration is established. It is shown that CNTs have predominantly longitudinal polarization due to the direction of the dipole moment in the bamboo-like “bridges”. It has been established that a decrease in the growth temperature from 690 to 645°С leads to an increase in the piezoelectric strain coefficient of CNTs from 4.5 to 21.2 pm ⋅ V–1. The obtained results can be used in the development of energy-efficient nanopiezotronic devices.

Sobre autores

M. Il’ina

Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering

Autor responsável pela correspondência
Email: mailina@sfedu.ru
Russia, 347922, Taganrog

O. Soboleva

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

M. Polyvianova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

D. Selivanova

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

S. Khubezhov

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology; North Ossetian State University

Email: mailina@sfedu.ru
Russia, 347922, Taganrog; Russia, 125993, Vladikavkaz

O. Il’in

Southern Federal University, Research Laboratory of Functional Nanomaterials Technology

Email: mailina@sfedu.ru
Russia, 347922, Taganrog

Bibliografia

  1. Wang Z.L. // Adv. Mater. 2012. V. 24. No. 34. P. 4632.
  2. Wang Z.L. // Adv. Mater. 2007. V. 19. No. 6. P. 889.
  3. Gao Y., Wang Z.L. // Nano Lett. 2007. V. 7. No. 8. P. 2499.
  4. Hu Y., Wang Z.L. // Nano Energy. 2014. V. 14. P. 3.
  5. Wang Z.L. // Nano Today. 2010. V. 5. No. 6. P. 540.
  6. He J. H., Hsin C. L., Liu J. et al. // Adv. Mater. 2007. V. 19. No. 6. P. 781.
  7. Mahapatra S. Das, Mohapatra P.C., Aria A.I. et al. // Adv. Sci. 2021. V. 8. No. 17. Art. No. 2100864.
  8. Choi I., Lee S.-J., Kim J.C. et al. // Appl. Surf. Sci. 2020. V. 511. Art. No. 145614.
  9. Wang X., Tian H., Xie W. et al. // NPG Asia Mater. 2015. V. 7. No. 1. Art. No. e154.
  10. da Cunha Rodrigues G., Zelenovskiy P., Romanyuk K. et al. // Nature Commun. 2015. V. 6. Art. No. 7572.
  11. Bistoni O., Barone P., Cappelluti E. et al. // 2D Mater. 2019. V. 6. No. 4. Art. No. 045015.
  12. Duggen L., Willatzen M., Wang Z.L. // J. Phys. Chem. C. 2018. V. 122. No. 36. P. 20581.
  13. Chandratre S., Sharma P. // Appl. Phys. Lett. 2012. V. 100. No. 2. Art. No. 023114.
  14. Ong M.T., Reed E.J. // ACS Nano 2012. V. 6. No. 2. P. 1387.
  15. Il’ina M.V., Il’in O.I., Guryanov A.V. et al. // J. Mater. Chem. C. 2021. V. 9. No. 18. P. 6014.
  16. Il’ina M., Il’in O., Osotova O. et al. // Carbon. 2022. V. 190. P. 348.
  17. Il’ina M.V., Osotova O.I., Rudyk N.N. et al. // Diam. Relat. Mater. 2022. V. 126. Art. No. 109069.
  18. Il’ina M.V., Soboleva O.I., Rudyk N.N. et al. // J. Adv. Dielectr. 2022. Art. No. 2241001.
  19. Il’ina M.V., Il’in O.I., Smirnov V.A. et al. Atomic-force microscopy and its applications. IntechOpen, 2019. P. 49.
  20. Агеев О.А., Ильин О.И., Коломийцев А.С. и др. // Нано-микросист. техн. 2012. № 3. С. 9.
  21. Il’ina M. V., Il’in O.I., Rudyk N.N. et al. // Nanomaterials. 2021. V. 11. No. 11. Art. No. 2912.
  22. Il’in O.I., Il’ina M.V., Rudyk N.N. et al. // Nanosyst. Phys. Chem. Math. 2018. V. 9. No. 1. P. 92.
  23. Neumayer S.M., Saremi S., Martin L.W. et al. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 171105.
  24. Il’in O.I., Rudyk N.N., Fedotov A.A. et al. // Nanomaterials. 2020. V. 10. No. 3. Art. No. 554.
  25. Louchev O.A. // Phys. Stat. Sol. Appl. Res. 2002. V. 193. No. 3. P. 585.
  26. Lee W.J., Maiti U.N., Lee J.M. et al. // Chem. Commun. 2014. V. 50. No. 52. P. 6818.
  27. Yamada Y., Kim J., Matsuo S., Sato S. // Carbon. 2014. V. 70. P. 59.
  28. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. V. 132. P. 104.
  29. Arenal R., Henrard L., Roiban L. et al. // Nano Lett. 2014. V. 14. No. 10. P. 5509.
  30. Kundalwal S.I., Meguid S.A., Weng G.J. // Carbon. 2017. V. 117. P. 462.
  31. Ильина М. В., Ильин О. И., Осотова О. И. и др. // Росс. нанотехнол. 2021. Т. 16. № 6. С. 857. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Nanobiotechnol. Rep. 2021. V. 16. No. 6. P. 821.
  32. Il’ina M.V., Il’in O.I., Osotova O.I. et al. // Diam. Relat. Mater. 2022. V. 123. Art. No. 108858.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (3MB)
3.

Baixar (116KB)
4.

Baixar (3MB)
5.

Baixar (32KB)

Declaração de direitos autorais © М.В. Ильина, О.И. Соболева, М.Р. Полывянова, Д.И. Селиванова, С.А. Хубежов, О.И. Ильин, 2023