The process of electrolyte-plasma cathode exfoliation of graphite

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We discussed the development of cathodic electrochemical exfoliation of graphite, accompanied by a plasma discharge with a voltage of 200V DC, in an aqueous solution of various electrolytes. The method of cathodic electrochemical exfoliation of graphite has established itself as a promising eco-friendly industrial method for producing nanographite with subsequent grinding by ultrasound into low-layer graphene (FLG). Cathodic exfoliation allows selective doping of nanographite oxygen atoms.

Sobre autores

E. Grushevski

Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch

Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150007

N. Savinski

Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch

Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150007

V. Bachurin

Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch

Autor responsável pela correspondência
Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150007

Bibliografia

  1. Асадов М.М., Мустафаева С.Н., Гусейнова С.С., Лукичев В.Ф. // Микроэлектроника. 2022. Т. 51. № 2. С. 125; Asadov M.M., Mustafaeva S.N., Guseinova S.S. et al. // Russ. Microelectron. 2022. V. 51. No 2. P. 83.
  2. Hu Y., Sun X.// In: Advances in graphene science. M.: Intech Open, 2013. 177 p.
  3. Choi C.H., Chung M.W., Kwon H.C. et al. // J. Mater. Chem. A. 2013. V. 11. No. 1. P. 3694.
  4. Wang Z., Zhou X., Zhang J. // J. Phys. Chem. C. 2009. V. 113. No. 32. P. 14071.
  5. Grushevski E., Savelev D., Mazaletski L. et al. // J. Phys. Conf. Ser. 2021. V. 2086. Art. No. 012014.
  6. Савинский Н.Г., Мелесов Н.С., Паршин Е.О. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 887; Savinsky N.G., Melesov N.S., Parshin E.O. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 6. P. 732.
  7. Савельев Д.Н., Грушевский Е.А., Савинский Н.Г. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 666; Savelyev D.N., Grushevski E.A., Savinski N.G. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 667.
  8. Соловьев М.Е., Раухваргер А.Б., Савинский Н.Г., Иржак В.И. // ЖОХ. 2017. Т. 87. № 4. С. 677; Solov’ev M.E., Raukhvarger A.B., Savinski N.G., Irzhak V.I. //Russ. J. Gen. Chem. 2017. V. 87. No. 4. P. 805.
  9. Andrianova N.N., Anikin V.A., Borisov A.M. et al. // J. Phys. Conf. Ser. 2019. V. 1313. Art. No. 012001.
  10. Andrianova N.N., Borisov A.M., Kazakov V.A. et al. // J. Surf. Inv. 2019. V. 13. No. 5. P. 802.
  11. Komarova N., Konev D., Kotkin A., Kochergin V. et al. // Mendeleev Commun. 2020. No. 30. P. 472.
  12. Siahkalroudi Z., Aghabarari B., Vaezi M. et al. // Molec. Catalysis. 2021. V. 502. No. 2. Art. No. 111372.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024