Stability of a skyrmion crystal in a frustrated antiferromagnetic bilayer on a triangular lattice
- Autores: Sharafullin I.F.1, Nugumanov A.G.1, Baisheva A.H.1, Yuldasheva A.R.1, Diep H.T.2
 - 
							Afiliações: 
							
- Bashkir State University
 - Laboratoire de Physique Theorique et Modelisation, Université Cergy-Paris, CNRS
 
 - Edição: Volume 87, Nº 4 (2023)
 - Páginas: 511-516
 - Seção: Articles
 - URL: https://clinpractice.ru/0367-6765/article/view/654426
 - DOI: https://doi.org/10.31857/S0367676522700909
 - EDN: https://elibrary.ru/NOIGHX
 - ID: 654426
 
Citar
Texto integral
Resumo
We studied the processes of formation and conditions of stability of skyrmion lattices during thermodynamic fluctuations in magnetoelectric films, namely, in a frustrated antiferromagnetic/ferroelectric bilayer on a triangular lattice. We calculate the ground state configurations with given parameters using the steepest descent method. We consider the thermodynamic fluctuations in influence of an external magnetic field on the ground state configurations and phase transitions occurring in the model using Monte Carlo simulation.
Sobre autores
I. Sharafullin
Bashkir State University
							Autor responsável pela correspondência
							Email: SharafullinIF@yandex.ru
				                					                																			                												                								Russia, 450076, Ufa						
A. Nugumanov
Bashkir State University
														Email: SharafullinIF@yandex.ru
				                					                																			                												                								Russia, 450076, Ufa						
A. Baisheva
Bashkir State University
														Email: SharafullinIF@yandex.ru
				                					                																			                												                								Russia, 450076, Ufa						
A. Yuldasheva
Bashkir State University
														Email: SharafullinIF@yandex.ru
				                					                																			                												                								Russia, 450076, Ufa						
H. Diep
Laboratoire de Physique Theorique et Modelisation, Université Cergy-Paris, CNRS
														Email: SharafullinIF@yandex.ru
				                					                																			                												                								France, UMR 8089, 95302, Cergy-Pontoise						
Bibliografia
- Samardak A.S., Kolesnikov A.G., Davydenko A.V. et al. // Phys. Met. Metallogr. 2022. V. 123. P. 238.
 - Fert A., Reyren N., Cros V. // Nature Rev. Mater. 2017. V. 2. No. 7. Art. No. 17031.
 - Göbel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
 - Marchenko A.I. Krivoruchko V.N. // J. Magn. Magn. Mater. 2015. V. 377. P. 153.
 - Sapozhnikov M.V. // J. Magn. Magn. Mater. 2015. V. 396. P. 338.
 - Nagaosa N. Tokura Y. // Nature Nanotechnol. 2013. V. 8. No. 12. P. 899.
 - Manchon A., Železný J., Miron J. et al. // Rev. Mod. Phys. 2019. V. 91. No. 3. Art. No. 035004.
 - Sharafullin I.F., Kharrasov M.K., Diep H.T. // Phys. Rev. B. 2019. V. 99. No. 21. Art. No. 214420.
 - Ding J., Yang X., Zhu T. // J. Phys. D. 2015. V. 48. No. 11. Art. No. 115004.
 - Fang W., Raeliarijaona A., Chang P.H. et al. // Phys. Rev. Mater. 2021. V. 5. No. 5. Art. No. 054401.
 - Heide M., Bihlmayer G., Blügel S. // Phys. Rev. B. 2008. V. 78. No. 14. Art. No. 140403(R).
 - Zhang X., Zhou Y., Ezawa M. // Nature Commun. 2016. V. 7. No. 1. P. 1.
 - Zhang X., Ezawa M., Zhou Y. // Phys. Rev. B. 2016. V. 94. No. 6. Art. No. 064406.
 - Шарафуллин И.Ф., Дьеп Х.Т. // Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 610; Sharafullin I.F., Diep H.T. // JETP Lett. 2021. V. 114. No. 9. P. 536.
 - Nugumanov A.G., Sharafullin I.F. // Lett. Mater. 2022. V. 12. No. 2. P. 116.
 
Arquivos suplementares
				
			
						
						
					
						
						
									






