O gipersingulyarnykh operatorakh, svyazannykh s peridinamikoy
- 作者: Alimov S.A1, Sheraliev S.N2
 - 
							隶属关系: 
							
- National University of Uzbekistan
 - Tashkent Branch, Lomonosov Moscow State University
 
 - 期: 卷 59, 编号 7 (2023)
 - 页面: 914-918
 - 栏目: Articles
 - URL: https://clinpractice.ru/0374-0641/article/view/649500
 - DOI: https://doi.org/10.31857/S0374064123070051
 - EDN: https://elibrary.ru/GUHJTY
 - ID: 649500
 
如何引用文章
详细
For a hypersingular integral operator of the Calderón–Zygmund type associated with problems of peridynamics, we find a Hilbert space that is taken by this operator to the space of square integrable periodic functions.
作者简介
Sh. Alimov
National University of Uzbekistan
														Email: sh_alimov@mail.ru
				                					                																			                												                								Tashkent, 100174, Uzbekistan						
Sh. Sheraliev
Tashkent Branch, Lomonosov Moscow State University
							编辑信件的主要联系方式.
							Email: shuhrat2500@mail.ru
				                					                																			                												                								Tashkent, 100060, Uzbekistan						
参考
- Silling S.A. Reformulation of elasticity theory for discontinuities and long-range forces // J. Mech. Phys. Solids. 2000. V. 48. № 1. P. 175-209.
 - Calderon A.P., Zygmund A. On the existence of certain singular integrals // Acta Math. 1952. V. 88. P. 85-139.
 - Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1999.
 - Ильин В.А. Ядра дробного порядка // Мат. сб. 1957. Т. 41 (83). № 4. С. 459-480.
 - Alimov Sh., Sheraliev Sh. On the solvability of the singular equation of peridynamics // Complex Variables and Elliptic Equat. 2019. V. 64. № 5. P. 873-887.
 - Ильин В.А. Спектральная теория дифференциальных операторов. Самосопряжённые дифференциальные операторы. М., 1991.
 
补充文件
				
			
						
						
						
						
					


