On simplification of the transport problem solution with ecological criterion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of neglecting the penalty component in solving the transport problem (TP) with an environmental criterion is analyzed, when, along piece-rate payment, fixed additives are assigned, due only to the fact of a specific transportation, and not to the amount of transported cargo (penalties). It was found that, while the threshold ratios of the standard deviations of tariffs and fines in a TP with a single optimal plan can be grouped quite tightly, in a TP with a non-unique optimal plan, their use is not effective due to the large spread. However, the possibility of applying the “looping” method proposed by the authors, when the TP is solved many times, in which penalties are added to the tariffs, divided first by the maximum possible transportation, then by the transportation plan at the previous step, allows neglecting the “penalties” if the loop ends at the first step. The disadvantage and reason for the approximate nature of the “looping” method is the possible presence of other cycles with local minima. The possibility of the “exclusions” method presented in the paper is also considered, when for a TK with n suppliers and m customers cells are excluded in descending order of fines if the remaining parts of capacities and capacities are sufficient. The ability to distribute transportation after R = (nm – (n + m – 1)) steps allows you to ignore tariffs when choosing a plan. The disadvantage of this method, equivalent to allocative least cost method is the possible difficulties in arranging transportations after R steps of exclusion made under the assumption of a “saturated” use of cells.

About the authors

V. Nikolaevich Assaul

Saint Petersburg State Aerospace Technologies University

Saint Petersburg, Russian Federation,

I. E. Pogodin

Naval Polytechnical Institute

Russian Federation, St. Petersburg

References

  1. Ассаул В.Н., Погодин И.Е. (2019). О транспортной задаче с экологическим критерием // Экономика и математические методы. Т. 55. № 2. С. 58–64.
  2. Ассаул В.Н. Погодин И.Е. (2022). Об одном практическом способе решения транспортной задачи с «экологическим» критерием // Вестник Бурятского государственного универ-ситета. Математика и информатика. № 3. С. 3–13.
  3. Бирман И.Я. (1968). Оптимальное программирование. М.: Экономика. 231с.
  4. Корбут А.А., Финкельштейн Ю.Ю. (1969). Дискретное программирование. М.: Наука. 368 с.
  5. Поляк Р.А. (1966). Об одной неоднородной транспортной задаче. В сб.: «Математические модели и методы оптимального планирования». Новосибирск: Наука. С.109-115.
  6. Седова С.В., Лебедев С.С. (1999). Решение одной задачи размещения с использованием уз-ловых векторов разрешающих множителей // Экономика и математические методы. Т. 35. № 3. С. 116–121.
  7. Седова С.В., Лебедев С.С. (2001). Метод узловых векторов целочисленного программиро-вания. 2. Задачи специального вида. Препринт ЦЭМИ. WP/2000/094. 88 с.
  8. Сигал И.Х., Иванова А.П. (2007). Введение в прикладное и дискретное программирование: модели и вычислительные алгоритмы. М.: Физматлит. С. 45–49.
  9. Фролькис В.А. (2002). Введение в теорию и методы оптимизации для экономистов. СПб: Питер. 320 с.
  10. Хоанг Т. (1964). Вогнутое программирование при линейных ограничениях // Доклады Ака-демии наук СССР. Т. 159. № 1. С. 32–35.
  11. Balinski M.L. (1961). Fixed cost transportation problem. Naval Res. Log. Quart, 8, 1, 41–54.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences