Predicting the probability of failure in medicinesʼ public procurement
- 作者: Denisova A.I.1, Sozaeva D.A.1, Gonchar K.V.1, Aleksandrov G.A.2
-
隶属关系:
- The State University of Management
- “PROGOSZAKAZ.RF”
- 期: 卷 60, 编号 4 (2024)
- 页面: 65-76
- 栏目: Industrial problems
- URL: https://clinpractice.ru/0424-7388/article/view/653281
- DOI: https://doi.org/10.31857/S0424738824040066
- ID: 653281
如何引用文章
详细
The quality and timeliness of medicinesʼ supply to the healthcare system through public procurement is an urgent task of public policy in all countries of the world, including Russia. Failure to close (failure of tenders, termination of already concluded contracts) procurement procedures in such a socially significant area carries risks for the population, provokes the emergence of hidden transaction costs for the budget system to eliminate the consequences of procurement failures. In their previous works, the authors identified the factors that lead to the failure to close tenders for the purchase of remedies, and initially assessed the consequences of their influence on procurement procedures. The purpose of this article is to present a mathematical model of the probability of non-closure tenders based on the obtained results. To achieve this goal, through processing more than 1 million notifications of public procurement of remedies for 2022–2023, collected from the open sources, the tasks with no methodological solutions were completed. Thus, a set of features accompanying the failure to close procedures for the purchase of remedies was compiled. The composition of identified features was analyzed; their influence on non-closure of the procedure was assessed. A model of the probability of non-closure of the procedure was constructed, and the results were interpreted. Unlike previously published studies, the forecast model was implemented on the ensembles of decision trees using gradient boosting. This made possible to significantly improve the quality of the forecast for each factor affecting the probability of non-closure of the bidding. The results obtained in the article are not only scientifically novel, but can also be used by regulatory and control bodies in public procurement to develop methodological recommendations for customers on establishing optimal conditions for concluding and fulfilling contracts, which will reduce procurement risks and damage to the state budget.
全文:

作者简介
A. Denisova
The State University of Management
编辑信件的主要联系方式.
Email: a.i.denisova@inbox.ru
俄罗斯联邦, Moscow
D. Sozaeva
The State University of Management
Email: dasozaeva@gmail.com
俄罗斯联邦, Moscow
K. Gonchar
The State University of Management
Email: goncharkv@gmail.com
俄罗斯联邦, Moscow
G. Aleksandrov
“PROGOSZAKAZ.RF”
Email: grishaalexx@gmail.com
俄罗斯联邦, Omsk
参考
- Гришин А. А., Строев С. П. (2020). Инструментарий и особенности решения задачи классификации в системах кредитного скоринга // Continuum. Математика. Информатика. Образование. № 1 (17). С. 51–59. doi: 10.24888/2500-1957-2020-17-1-51-59 [Grishin A. A., Stroev S. P. (2020). Tools and features of solving the classification problem in credit scoring systems. Continuum. Maths. Informatics. Education, 1 (17), 51–59. doi: 10.24888/2500-1957-2020-17-1-51-59 (in Russian).]
- Денисова А. И. (2017). Моделирование рисков лицензируемых товарных рынков российской Федерации // Научные труды Вольного экономического общества России. Т. 206. № 4. С. 133–145. [Denisova A. I. (2017). Risk modeling in the licensed commodity markets of the Russian Federation. Scientific Works of the Free Economic Society of Russia, 206, 4, 133–145 (in Russian).]
- Денисова А. И., Созаева Д. А., Гончар К. В., Александров Г. А. (2023). Совершенствование методологии оценки экономической эффективности государственных закупок лекарственных средств // Финансовый журнал. Т. 15. № 4. С. 63–81. doi: 10.31107/2075-1990-2023-4-63-81 [Denisova A. I., Sozaeva D. A., Gonchar K. V., Aleksandrov G. A. (2023). Improving the methodology for assessing the economic efficiency of public procurement of medicines. Financial Journal, 15 (4), 63–81. doi: 10.31107/2075-1990-2023-4-63-81 (in Russian).]
- Денисова А. И., Созаева Д. А., Гончар К. В., Александров Г. А. (2024). Анализ факторов незакрытия торгов по госзакупкам лекарственных препаратов // Проблемы прогнозирования. № 1 (202). С. 178–191. doi: 10.47711/0868-6351-203-178-191 [Denisova A. I., Sozaeva D. A., Gonchar K. V., Aleksandrov G. A. (2024). Analysis of factors of failure of public procurement of medicines. Studies on Russian Economic Development, 1 (202), 178– 191. doi: 10.47711/0868-6351-203-178-191 (in Russian).]
- Лычков И. И., Гончар К. В., Созаева Д. А. (2023). Консерватизм, мобильность, изоляция: подход к исследованию поведения агентов рынка государственных закупок // Экономика и математические методы. Т. 59. № 4. С. 45–57. doi: 10.31857/S042473880026993-1 [Lychkov I. I., Gonchar K. V., Sozaeva D. A. (2023). Conservatism, mobility, isolation: Approach to study of agents’ behavior in the public procurement market. Economics and Mathematical Methods, 59, 4, 45–57. doi: 10.31857/S042473880026993-1 (in Russian).]
- Моргунов А. В. (2016). Моделирование вероятности дефолта инвестиционных проектов // Корпоративные финансы. Т. 10. № 1 (37). С. 23–45. [Morgunov A. V. (2016). Modeling the probability of default of the investment projects. Journal of Corporate Finance Research, 10, 1 (37), 23–45 (in Russian).]
- Федоренко И. Н., Михайлова В. В. (2015). Контроль и оптимизация как основа повышения эффективности расходования бюджетных средств в системе государственных закупок // Инновационная наука. № 12-1. С. 311–314. [Fedorenko I. N., Mikhailova V. V. (2015). Control and optimization as a basis for improving the efficiency of budget spending in the public procurement system. Innovative Science, 12–1, 311–314 (in Russian).]
- Adler A. I., Painsky A. (2022). Feature importance in gradient boosting trees with cross-validation feature selection. Entropy, 24, 687. doi: 10.3390/e24050687
- Bentéjac C., Csörgo A., Martínez-Muñoz G. (2019). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937–1967.
- Blaťák J. (2016). Reduction of the risk in public procurement by using design-build as a means for suitable constructing. Stavební Obzor — Civil Engineering Journal, 25 (2). doi: 10.14311/CEJ.2016.02.0007
- Brink H., Richards J., Fetherolf M. (2016). Real-world machine learning. 1st ed. N.Y.: Manning. 264 p. [Бринк Х., Ричардс Дж., Феверолф М. (2017). Машинное обучение. СПб.: Питер. 336 с. (на русс. языке)].
- Dorogush A. V., Ershov V., Gulin A. (2018). CatBoost: Gradient boosting with categorical features support. ArXiv, abs/1810.11363
- Dyer A. S., Zaengle D., Nelson J. R., Duran R., Wenzlick M., Wingo P. C. et al. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks. Marine Structures, 83. doi: 10.1016/j.marstruc.2021.103152
- Fazekas M., Tóth I. J., King L. P. (2016). An objective corruption risk index using public procurement data. The European Journal on Criminal Policy and Research, 22, 369–397. doi: 10.1007/s10610-016-9308-z
- Hamzah N., Perera P. N., Rannan-Eliya R.P. (2020). How well does Malaysia achieve value for money in public sector purchasing of medicines? Evidence from medicines procurement prices from 2010 to 2014. BMC Health Services Research, 20, 509. doi: 10.1186/s12913-020-05362-8
- Jun M. (2021). A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: The case of the Seoul metropolitan area. International Journal of Geographical Information Science, 35, 2149–2167.
- Lundberg S. M., Erion G. G., Lee S. (2018). Consistent individualized feature attribution for tree ensembles. ArXiv: abs/1802.03888
- Natekin A., Knoll A. (2013). Gradient boosting machines, a tutorial. Front. Neurorobotics, 7 (21). doi: 10.3389/fnbot.2013.00021
- Sales L. (2013). Risk prevention of public procurement in the Brazilian government using credit scoring. 2013 OBEGEF — Observatório de Economia e Gestão de Fraude. Paper in the International Conference Interdisciplinary Insights on Fraud and Corruption. Working Papers, 19. 27 p.
- Sudakov O., Burnaev E., Koroteev D. (2019). Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks. Computers & Geosciences, 127, 91–98. doi: 10.1016/j.cageo.2019.02.002
- Sulaeman S., Benidris M., Mitra J. Singh C. (2017). A wind farm reliability model considering both wind variability and turbine forced outages. 2017 IEEE Power & Energy Society General Meeting. Chicago (IL), USA, 1–1. doi: 10.1109/PESGM.2017.8274250
- Velasco R. B., Carpanese I., Interian R., Paulo Neto O. C.G., Ribeiro C. C. (2021). A decision support system for fraud detection in public procurement. International Transactions in Operational Research, 28, 27–47. doi: 10.1111/itor.12811
- Wang B., Liu Y., Sun X. et al. (2021) Prediction model and assessment of probability of incident hypertension: The rural Chinese cohort study. Journal of Human Hypertension, 35, 74–84. doi: 10.1038/s41371-020-0314-8
补充文件
