Diethyl Sulfide Oxidation with Activated Hydrogen Peroxide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of environmentally favorable and effective methods for the disposal of chemical weapons is an important task in ensuring the ecological stability of the environment and reducing the risk of emergency situation. The review presents a comparative analysis of metal-free oxidation systems of diethyl sulfide (Et2S), a simulator of the chemical warfare agent mustard gas (2,2′-dichlorodiethyl sulfide), based on hydrogen peroxide and its activators that meet the requirements of “green chemistry”. The ways for increasing the solubility of the thioester in the reaction mixture that lead to an increase of oxidation rate were analyzed. A choice of oxidation systems, depending on the pH of the reaction medium, is proposed.

Texto integral

Acesso é fechado

Sobre autores

T. Bezbozhnaya

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Autor responsável pela correspondência
Email: b.t.v.57@rambler.ru
Rússia, R. Luxemburg st., 70, Donetsk, DPR, 283048

А. Liubymova

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Email: b.t.v.57@rambler.ru
Rússia, R. Luxemburg st., 70, Donetsk, DPR, 283048

V. Lobachev

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Email: b.t.v.57@rambler.ru
Rússia, R. Luxemburg st., 70, Donetsk, DPR, 283048

Bibliografia

  1. Weetman C., Notman S., Arnold P. L. // Dalton Trans. 2018. V. 47. P. 2568. https://doi.org/10.1039/C7DT04805J
  2. Nawała J., Jóźwik P., Popiel S. // Int. J. Environ. Sci. Technol. 2019. V. 16. P. 3899. https://doi.org/10.1007/s13762-019-02370-y
  3. Khan A.W., Kotta S., Ansari S.H., Ali J., Sharma R.K. // Def. Sci. J. 2013. V. 63. P. 487. https://doi.org/10.14429/ dsj.63.2882
  4. Конвенция о запрещении разработки, производства, накопления и применения химического оружия и его уничтожения. Париж, 13 января 1993. https://www.un.org/ru/documents/decl_conv/conventions/chemweapons.shtml (дата обращения 07.10.2024).
  5. Oheix E., Gravel E., Doris E. // Chem. Eur. J. 2020. V. 27. № 1. P. 54. https://doi.org/10.1002/chem.202003665
  6. Ayoub G., Arhangelskis M., Zhang X., Son F., Islamoglu T., Friščić T., Farha O.K. // Beilstein J. Nanotechnol. 2019. V. 10. № 1. P. 2422. https://doi.org/10.3762/bjnano.10.232
  7. Ramakrishna C., Krishna R., Saini B., Gopi T., Swetha G., Chandra Shekar S. // Phosphorus Sulfur Silicon Relat. Elem. 2016. V. 191. № 7. P. 965. https://doi.org/10.1080/10426507.2015.1130047
  8. Haddad R. // Curr. Org. Synth. 2022. V. 19. № 7. P. 808. https://doi.org/10.2174/1570179419666220301124655
  9. Jabbour C.R., Parker L.A., Hutter E.M., Weckhuysen B.M. // Nat. Rev. Chem. 2021. V. 5. № 6. P. 370. https://doi.org/10.1038/s41570-021-00275-4
  10. Zhao S., Zhu Y., Xi H., Han M., Li D., Li Y., Zhao H. // J. Environ. Chem. Eng. 2020. V. 8. № 5. P. 104221. https://doi.org/10.1016/j.jece.2020.104221
  11. Adewuyi Y.G., Carmichae G.R. // Environ. Sci. Technol. 1986. V. 20. № 10. P. 1017. https://doi.org/10.1021/es00152a009
  12. Amels P., Elias H., Wannowis K.-J. // J. Chem. Soc. Faraday Trans. 1997. V. 93. № 15. P. 2537. https://doi.org/10.1039/a700722a
  13. Лобачев В.Л., Дятленко Л.М., Зубрицкий М.Ю. // Кинетика и катализ. 2016. Т. 57. № 6. С. 751. (Lobachev V.L., Dyatlenko L.M., Zubritskii M.Y. // Kinet. Catal. 2016. V. 57. № 6. P. 742. doi: 10.1134/S0023158416060094)
  14. Лобачев В.Л., Савелова В.А., Прокопьева Т.М. // Теор. эксп. хим. 2004. Т. 40. № 3. С. 157. (Lobachev V.L., Savelova V.A., Prokop’eva T.M. // Teor. Eksp. Khim. 2004. V. 40. № 3. P. 161. https://doi.org/10.1023/b:thec.0000036211.45290.66)
  15. Yao H., Richardson D.E. // J. Am. Chem. Soc. 2003. V. 125. № 20. P. 6211. https://doi.org/10.1021/ja0274756
  16. Richardson D.E., Yao H., Frank K.M., Bennet D.A. // J. Am. Chem. Soc. 2000. V. 122. № 8. P. 1729. https://doi.org/10.1021/ja9927467
  17. Bennet D.A., Yao H., Richardson D.E. // Inorg. Chem. 2001. V. 40. № 13. P. 2996. https://doi.org/10.1021/ic000910h
  18. Вахитова Л.Н., Матвиенко К.В., Таран Н.А., Лахтаренко Н.В., Попов А.Ф. // ЖОрХ. 2011. Т. 47. № 7. С. 951. (Vakhitova L.N., Matvienko K.V., Taran N.A., Lakhtarenko N.V., Popov A.F. // Russ. J. Org. Chem. 2011. V. 47. № 7. P. 965. https://doi.org/10.1134/S1070428011070013)
  19. Савелова В.А., Садовский Ю.С., Соломойченко Т.Н., Прокопьева Т.М., Космынин В.В., Пискунова Ж.П., Бантон К.А., Попов А.Ф. // Теор. эксп. хим. 2008. Т. 44. C. 98. (Savelova V.A., Sadovskii Yu.S., Solomoichenko T.N., Prokop’eva T.M., Kosmynin V.V., Piskunova Zh.P., Bunton C.A., Popov A.F. // Teor. Eksp. Khim. 2008. V. 44. P. 101. https://doi.org/10.1007/s11237-008-9012-2)
  20. Лобачев М.Л., Зимцева Г.П., Матвиенко Я.В., Рудаков Е.С. // Теор. эксп. хим. 2007. Т. 43. № 1. С. 38. (Lobachev V.L., Zimtseva G.P., Matvienko Ya.V., Rudakov E.S. // Teor. Eksp. Khim. 2007. V. 43. № 1. P. 44. https://doi.org/10.1007/s11237-007-0004-4)
  21. Вахитова Л.Н., Жильцова С.В., Скрипка А.В., Разумова Н.Г., Таран Н.А., Савелова В.А., Попов А.Ф. // Теор. эксп. хим. 2006. Т. 42. № 5. С. 281. (Vakhitova L.N., Zhil’tsova S.V., Skrypka A.V., Razumova N.G., Taran N.A., Savelova V.A., Popov A.F. // Teor. Eksp. Khim. 2006. V. 42. № 5. P. 287. https://doi.org/10.1007/s11237-006-0055-y)
  22. Дятленко Л.М., Лобачев В.Л., Безбожная Т.В. // Журн. физ. химии. 2018. Т. 92. № 7. С. 1041. doi: 10.7868/S0044453718070026 (Dyatlenko L.M., Lobachev V.L., Bezbozhnaya T.V. // Russ. J. Phys. Chem. A. 2018. V. 92. № 7. P. 1248. doi: 10.1134/S0036024418070099)
  23. Лобачев В.Л., Прокопьева Т.М., Савелова В.А. // Теор. эксп. хим. 2004. Т. 40. № 6. С. 368.
  24. Лобачев В.Л., Дятленко Л.М, Зимцева Г.П. // Теор. эксп. хим. 2012. Т. 48. № 3. С. 168. (Lobachev V.L., Zimtseva G.P., Dyatlenko L.M. // Teor. Eksp. Khim. 2012. V. 48. № 3. P. 182. https://doi.org/10.1007/s11237-012-9259-5)
  25. Davies D.M., Deary M.E., Quill K., Smith R.A. // Chem. Eur. J. 2005. V. 11. № 12. P. 3552. https://doi.org/10.1002/chem.200401209
  26. Durrant M.C., Davies D.M., Deary M.E. // Org. Biomol. Chem. 2011. V. 9. № 20. P. 7249. https://doi.org/10.1039/C1OB06142A
  27. Рудаков Е.С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. Киев: Наук. Думка, 1985. 247 c.
  28. Сигаева А.К., Лобачев В.Л., Безбожная Т.В. // Вестник ДонНУ. Сер. А: Естественные науки. 2018. № 2. С. 89.
  29. Любимова А.К., Безбожная Т.В., Лобачев В.Л. // Кинетика и катализ. 2021. Т. 62. № 3. С. 296. https://doi.org/10.31857/S0453881121030060
  30. Laus G. // J. Chem. Soc. Perkin Тrans. 2. 2001. № 6. P. 864. https://doi.org/10.1039/b102066h
  31. Bethell D., Graham A.E., Heer J.P., Markopoulou O., Page P.C.B., Park B.K. // J. Chem. Soc. Perkin Trans. 2. 1993. P. 2161. https://doi.org/10.1039/P29930002161
  32. Gillitt N.D., Domingos J., Bunton C.A. // J. Phys. Org. Chem. 2003. V. 16. P. 603. https://doi.org/10.1002/poc.646
  33. McLsaac Jr.J.E., Ball R.E., Behrman E.J. // J. Org. Chem. 1971. V. 36. № 9. P. 3048. https://doi.org/10.1021/jo00819a034
  34. Любимова А.К., Лобачев В.Л., Безбожная Т.В. // Журн. общ. химии. 2024. Т. 94. № 1. С. 3. https://doi.org/10.31857/S0044460X24010016

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. pH-dependences of the oxidation rate constants of Et2S in the systems: 1 – H2O2 (0.03 mol/l), 2 – H2O2 (0.03 mol/l)–NaHCO3 (0.006 mol/l) [22].

Baixar (11KB)
3. Fig. 2. Dependences of the rate constants of diethyl sulfide oxidation by hydrogen peroxide on the concentration of surfactants: CTAB (1), Triton (2), GC-MCIH (3) and SDS (4) [23].

Baixar (16KB)
4. Fig. 3. Dependences of the rate constants of oxidation of diethyl sulfide by peroxymonocarbonate on the concentration of surfactants: CTAB (1), Triton (2), GK-MCIH (3) and SDS (4) [23].

Baixar (15KB)
5. Fig. 4. pH-dependences of the rate constants of Et2S oxidation in the H2O2 (0.02 mol/l)–B(OH)3 (0.02 mol/l) system at a temperature of 25°C in water (1) and in aqueous-alcoholic media with a H2O : ROH (vol. %) ratio of 70 : 30: H2O–C2H4(OH)2 (2), H2O–i-PrOH (3), H2O–EtOH (4); H2O–t-BuOH (5) [24].

Baixar (27KB)
6. Fig. 5. Dependences of the rate constants of Et2S oxidation by hydrogen peroxide (1) and in the H2O2 (0.02 mol/l)–B(OH)3 (0.02 mol/l) system (2) on the concentration of CTAB. Conditions: pH 9.0; 25°C [28].

Baixar (11KB)
7. Fig. 6. Dependences of the rate constants of Et2S oxidation by aqueous solutions of hydrogen peroxide (1) and sodium peroxoborate (2) on the pH of the medium [13].

Baixar (11KB)
8. Fig. 7. pH-dependences of the rate constants of Et2S oxidation at a temperature of 25°C with hydrogen peroxide (1); peroxoborate (0.015 mol/l) (3) and in the systems H2O2 (0.03 mol/l)–NaHCO3 (0.06 mol/l) (2); PB (0.015 mol/l)–NaHCO3 (0.006 mol/l) (4) [22].

Baixar (14KB)
9. Fig. 8. pH-dependences of the initial rates of Et2S oxidation by hydrogen peroxide in aqueous solutions (1) and in a mixture of H2O–MeCN ([MeCN] = 1 vol. %) (2). Conditions: [H2O2] = 0.006 mol/l, [Et2S] = 4.2 × 10-5 mol/l; 25°C [29].

Baixar (13KB)
10. Fig. 9. pH-dependences of the initial rates of Et2S oxidation at 25°C: 1 – with sodium peroxoborate in aqueous solutions ([PB] = 0.002 M); 2 – in the H2O–PB–MeCN system ([MeCN] = 0.19 M (1 vol. %), [PB] = 0.002 M); 3 – in the H2O2–MeCN– –H2O system ([H2O2] = 0.006 M, [MeCN] = 0.19 M (1 vol. %)); [Et2S] = 4.2 × 10-5 mol/L [34].

Baixar (13KB)
11. Scheme 1. State of hydrogen peroxide in various environments.

Baixar (10KB)
12. Scheme 2. Structural formulas of surfactants.

Baixar (15KB)
13. Scheme 3. State of boric acid in solutions.

Baixar (11KB)
14. Scheme 4. Oxidation of diethyl sulfide with hydrogen peroxide in acetonitrile.

Baixar (9KB)